Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 162: 141-148, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33249138

RESUMEN

Hepatic steatosis and subsequent fatty liver disease are developed in response to alcohol consumption. Reactive oxygen species (ROS) are thought to play an important role in the alcoholic fatty liver disease (AFLD). However, the molecular targets of ROS and the underlying cellular mechanisms are unknown. Here, we investigate roles of peroxiredoxin III and redox regulation of phosphatase and tension homolog deleted on chromosome 10 (PTEN) in the alcoholic fatty liver. Alcohol-induced mitochondrial oxidative stress was found to contribute to reversible oxidation of PTEN, which results in Akt and MAPK hyperactivation with elevated levels of the lipogenesis regulators SREBP1c and PPARγ. Moreover, mitochondrial peroxiredoxin III was found to have antagonistic effects on lipogenesis via the redox regulation of PTEN by removing ROS, upon alcohol exposure. This study demonstrated that redox regulation of PTEN and peroxiredoxin III play crucial roles in the development of AFLD.


Asunto(s)
Hígado Graso Alcohólico , Hígado Graso Alcohólico/genética , Hígado Graso Alcohólico/metabolismo , Humanos , Lipogénesis , Hígado/metabolismo , Oxidación-Reducción , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Peroxiredoxina III/metabolismo
2.
Redox Biol ; 34: 101553, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32413744

RESUMEN

Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) is a potent tumor suppressor and often dysregulated in cancers. Cellular PTEN activity is restrained by the oxidation of active-site cysteine by reactive oxygen species (ROS). Recovery of its enzymatic activity predominantly depends on the availability of cellular thioredoxin (Trx) and peroxiredoxins (Prx), both are important players in cell signaling. Trx and Prx undergo redox-dependent conformational changes through the oxidation of cysteine residues at their active sites. Their dynamics are essential for protein functionality and regulation. In this review, we summarized the recent advances regarding the redox regulation of PTEN, with a specific focus on our current state-of-the-art understanding of the redox regulation of PTEN. We also proposed a tight association of the redox regulation of PTEN with Trx dimerization and Prx hyperoxidation, providing guidance for the identification of novel therapeutic targets.


Asunto(s)
Peroxirredoxinas , Tiorredoxinas , Cisteína , Oxidación-Reducción , Fosfohidrolasa PTEN , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
3.
Antioxidants (Basel) ; 9(5)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380763

RESUMEN

Selenium is a vital trace element present as selenocysteine (Sec) in proteins that are, thus, known as selenoproteins. Humans have 25 selenoproteins, most of which are functionally characterized as oxidoreductases, where the Sec residue plays a catalytic role in redox regulation and antioxidant activity. Glutathione peroxidase plays a pivotal role in scavenging and inactivating hydrogen and lipid peroxides, whereas thioredoxin reductase reduces oxidized thioredoxins as well as non-disulfide substrates, such as lipid hydroperoxides and hydrogen peroxide. Selenoprotein R protects the cell against oxidative damage by reducing methionine-R-sulfoxide back to methionine. Selenoprotein O regulates redox homeostasis with catalytic activity of protein AMPylation. Moreover, endoplasmic reticulum (ER) membrane selenoproteins (SelI, K, N, S, and Sel15) are involved in ER membrane stress regulation. Selenoproteins containing the CXXU motif (SelH, M, T, V, and W) are putative oxidoreductases that participate in various cellular processes depending on redox regulation. Herein, we review the recent studies on the role of selenoproteins in redox regulation and their physiological functions in humans, as well as their role in various diseases.

4.
Oxid Med Cell Longev ; 2019: 2828493, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636803

RESUMEN

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase that coordinates various cellular processes. Its activity is regulated by the reversible oxidation of an active-site cysteine residue by H2O2 and thioredoxin. However, the potential role of lipid peroxides in the redox regulation of PTEN remains obscure. To evaluate this, 15-hydroperoxy-eicosatetraenoic acid (15s-HpETE), a lipid peroxide, was employed to investigate its effect on PTEN using molecular and cellular-based assays. Exposure to 15s-HpETE resulted in the oxidation of recombinant PTEN. Reversible oxidation of PTEN was also observed in mouse embryonic fibroblast (MEF) cells treated with a 15s-HpETE and Lipofectamine mixture. The oxidative dimerization of thioredoxin was found simultaneously. In addition, the absence of peroxiredoxin III aggravated 15s-HpETE-induced PTEN oxidation in MEF cells. Our study provides novel insight into the mechanism linking lipid peroxidation to the etiology of tumorigenesis.


Asunto(s)
Leucotrienos/uso terapéutico , Peróxidos Lipídicos/uso terapéutico , Fosfohidrolasa PTEN/efectos de los fármacos , Peroxiredoxina III/uso terapéutico , Animales , Humanos , Leucotrienos/farmacología , Peróxidos Lipídicos/farmacología , Ratones , Oxidación-Reducción , Peroxiredoxina III/farmacología , Transfección
5.
Free Radic Biol Med ; 112: 277-286, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28774816

RESUMEN

Intracellular redox status influences the oxidation and enzyme activity of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN). Cumene hydroperoxide (CuHP), an organic hydroperoxide, is a known tumor promoter. However, molecular targets and action mechanism of CuHP in tumor promotion have not been well characterized. In this study, we investigated the effect of CuHP on the redox state of PTEN in HeLa cells. In addition, the intracellular reducing system of oxidized PTEN was analyzed using a biochemical approach and the effect of CuHP on this reducing system was also analyzed. While PTEN oxidized by hydrogen peroxide is progressively converted to its reduced form, PTEN was irreversibly oxidized by exposure to CuHP in HeLa cells. A combination of protein fractionation and mass analysis showed that the reducing system of PTEN was comprised of NADPH, thioredoxin reductase (TrxR), and thioredoxin (Trx). Although CuHP-mediated PTEN oxidation was not reversible in cells, CuHP-oxidized PTEN was reactivated by the exogenous Trx system, indicating that the cellular Trx redox system for PTEN is inactivated by CuHP. We present evidence that PTEN oxidation and the concomitant inhibition of thioredoxin by CuHP results in irreversible oxidation of PTEN in HeLa cells. In addition, ablation of peroxiredoxin (Prdx) enhanced CuHP-induced PTEN oxidation in cells. These results provide a new line of evidence that PTEN might be a crucial determinant of cell fate in response to cellular oxidative stress induced by organic hydroperoxides.


Asunto(s)
Derivados del Benceno/farmacología , Carcinógenos/farmacología , Fibroblastos/efectos de los fármacos , Fosfohidrolasa PTEN/química , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxinas/metabolismo , Animales , Línea Celular , Embrión de Mamíferos , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Células HeLa , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , NADP/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiorredoxina Reductasa 1/genética , Tiorredoxinas/genética
6.
Int J Mol Sci ; 18(5)2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28489026

RESUMEN

Organic peroxides and hydroperoxides are skin tumor promoters. Free radical derivatives from these compounds are presumed to be the prominent mediators of tumor promotion. However, the molecular targets of these species are unknown. Phosphatase and tensin homologs deleted on chromosome 10 (PTEN) are tumor suppressors that play important roles in cell growth, proliferation, and cell survival by negative regulation of phosphoinositol-3-kinase/protein kinase B signaling. PTEN is reversibly oxidized in various cells by exogenous and endogenous hydrogen peroxide. Oxidized PTEN is converted back to the reduced form by cellular reducing agents, predominantly by the thioredoxin (Trx) system. Here, the role of tert-butyl hydroperoxide (t-BHP) in redox regulation of PTEN was analyzed by using cell-based and in vitro assays. Exposure to t-BHP led to oxidation of recombinant PTEN. In contrast to H2O2, PTEN oxidation by t-BHP was irreversible in HeLa cells. However, oxidized PTEN was reduced by exogenous Trx system. Taken together, these results indicate that t-BHP induces PTEN oxidation and inhibits Trx system, which results in irreversible PTEN oxidation in HeLa cells. Collectively, these results suggest a novel mechanism of t-BHP in the promotion of tumorigenesis.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Fosfohidrolasa PTEN/química , terc-Butilhidroperóxido/farmacología , Células HeLa , Humanos , Oxidación-Reducción , Fosfohidrolasa PTEN/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Tiorredoxinas/metabolismo
7.
Methods ; 77-78: 58-62, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25637034

RESUMEN

PTEN is reversibly oxidized in various cells by exogenous hydrogen peroxide as well as by endogenous hydrogen peroxide generated when cells are stimulated with growth factors, cytokines and hormones. A gel mobility shift assay showed that oxidized PTEN migrated more rapidly than reduced PTEN on a non-reducing SDS-PAGE gel. Oxidized PTEN was reduced when treated with dithiothreitol. Supplementation of N-ethylmaleimide in the cell lysis buffer was critical for the apparent bands of oxidized and reduced PTEN. Formation of oxidized PTEN was abolished when the active site Cys(124) or nearby Cys(71) was replaced with Ser suggesting that Cys(124) and Cys(71) are involved in the formation of an intramolecular disulfide bond. These results show that the mobility shift assay is a convenient method to analyze the redox state of PTEN in cells.


Asunto(s)
Electroforesis en Gel de Poliacrilamida/métodos , Fosfohidrolasa PTEN/análisis , Fosfohidrolasa PTEN/metabolismo , Proteínas Supresoras de Tumor/análisis , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Células HeLa , Humanos , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Oxidación-Reducción , Fosfohidrolasa PTEN/genética , Conejos , Proteínas Supresoras de Tumor/genética
8.
PLoS One ; 9(4): e95518, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24751718

RESUMEN

Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO), the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.


Asunto(s)
Mamíferos/metabolismo , Proteínas Mitocondriales/metabolismo , Selenoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Dieta , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Oxidación-Reducción/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Reproducibilidad de los Resultados , Selenio/metabolismo , Selenoproteínas/química , Selenoproteínas/genética
9.
Redox Rep ; 16(4): 181-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21888769

RESUMEN

Exposure of cells to hydrogen peroxide or platelet-derived growth factor (PDGF) induced Akt phosphorylation and oxidation of phosphatase and tensin homolog (PTEN). The Cys124 and Cys71 residues of PTEN were critical for the formation of a disulfide bond and the intermediate glutathionylation in the process of reduction of the disulfide bond. To determine which specific tyrosine residues of the PDGF beta receptor (PDGFßR) is involved in PDGF-induced PTEN oxidation and Akt phosphorylation, we investigated a kinase activity-deficient mutant and PDGFßR mutants where the tyrosine residues in the binding site for phosphoinositide 3-kinase (PI3K), GTPase-activating protein of Ras, Src homology 2 domain containing protein-tyrosine phosphatase-2, and phospholipase C-1 were replaced by Phe. Both PTEN oxidation and Akt phosphorylation did not occur in response to PDGF in the kinase-deficient mutant and in the PDGFßR mutant with a mutation in the PI3K binding site (Tyr740 and Tyr751). Thus, the kinase activity and the constituent Tyr740 and Tyr751 residues of PDGFßR in the cells stimulated with PDGF are responsible for the oxidation of PTEN and the Akt phosphorylation.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Transducción de Señal/genética , Sitios de Unión/genética , Técnicas de Cultivo de Célula , Activación Enzimática , Glutatión/metabolismo , Humanos , Mutación , Oxidación-Reducción/efectos de los fármacos , Fosfohidrolasa PTEN/efectos de los fármacos , Fosforilación/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos
10.
Biochem Biophys Res Commun ; 407(1): 175-80, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21371429

RESUMEN

Human PTEN (phosphatase and tensin homolog deleted on chromosome 10; a phosphatidylinositol 3-phosphatase) expressed in Saccharomyces cerevisiae was oxidized in a time- and H(2)O(2)-concentration-dependent manner. Oxidized hPTEN was reduced by cellular reductants as in human cells. The reduction rate of oxidized hPTEN was monitored in S. cerevisiae mutants in which the genes involved in redox homeostasis had been disrupted. Reduction of hPTEN was delayed in each of S. cerevisiae grx5Δ and ycp4Δ mutants. Expression of Grx5 and Ycp4 in each of the mutants rescued the reduction rate of oxidized hPTEN. Furthermore, an in vitro assay revealed that the human Grx5/GSH system efficiently catalyzed the reduction of oxidized hPTEN. These results suggest that the reduction of oxidized hPTEN is regulated by Grx5 and Ycp4.


Asunto(s)
Flavodoxina/metabolismo , Glutarredoxinas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Glutarredoxinas/genética , Humanos , Peróxido de Hidrógeno/metabolismo , Datos de Secuencia Molecular , Oxidación-Reducción , Fosfohidrolasa PTEN/genética , Saccharomyces cerevisiae/genética
11.
FEBS Lett ; 584(16): 3550-6, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20637195

RESUMEN

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expressed in Saccharomyces cerevisiae was reversibly oxidized by hydrogen peroxide and reduced by cellular reductants. Reduction of hPTEN was delayed in each of S. cerevisiae gsh1Delta and gsh2Delta mutants. Expression of gamma-glutamylcysteine synthetase Gsh1 in the gsh1Delta mutant rescued regeneration rate of hPTEN. Oxidized hPTEN was reduced by glutathione in a concentration- and time-dependent manner. Glutathionylated PTEN was detected. Incubation of 293T cells with BSO and knockdown expression of GCLc in HeLa cells by siRNA resulted in the delay of reduction of oxidized PTEN. Also, in HeLa cells transfected with GCLc siRNA, stimulation with epidermal growth factor resulted in the increase of oxidized PTEN and phosphorylation of Akt. These results suggest that the reduction of oxidized hPTEN is mediated by glutathione.


Asunto(s)
Glutatión/metabolismo , Fosfohidrolasa PTEN/metabolismo , Secuencia de Bases , Línea Celular , Cartilla de ADN/genética , Glutamato-Cisteína Ligasa/antagonistas & inhibidores , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión Sintasa/genética , Glutatión Sintasa/metabolismo , Células HeLa , Humanos , Técnicas In Vitro , Modelos Biológicos , Mutación , Oxidación-Reducción , Fosfohidrolasa PTEN/genética , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Environ Toxicol Pharmacol ; 24(2): 149-54, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21783803

RESUMEN

The effects of butyltin compounds on follicular steroidogenesis in amphibians were examined using ovarian follicles of Rana catesbeiana. Isolated follicles were cultured for 18h in the presence and absence of frog pituitary homogenate (FPH) or various steroid precursors, and the steroid levels in the follicles or culture media were measured by radioimmunoassay (RIA). Among the butyltin compounds, tributyltin (TBT) strongly inhibited the FPH-induced synthesis of pregnenolone (P(5)), progesterone (P(4)) and testosterone (T). It also inhibited the conversion of P(5)-P(4) and T to estradiol-17ß(E(2)) and it partially suppressed the conversion of androstenedione (AD) to T, but not P(4) to 17α-hydroxyprogesterone (17α-OHP(4)). A high concentration of dibutyltin (DBT) also inhibited steroidogenesis by the follicles while monobutyltin (MBT) and tetrabutylin (TeBT) had no effect. These results suggest that the initial step of steroidogenesis (P(5) synthesis) and enzymes such as 3ß-HSD, 17ß-HSD and aromatase are inhibited by TBT or DBT. However, 17α-hydroxylase was not suppressed by TBT or the other butyltin compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...