Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(7): e37, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38452210

RESUMEN

G-quadruplexes (G4s) are noncanonical nucleic acid structures pivotal to cellular processes and disease pathways. Deciphering G4-interacting proteins is imperative for unraveling G4's biological significance. In this study, we developed a G4-targeting biotin ligase named G4PID, meticulously assessing its binding affinity and specificity both in vitro and in vivo. Capitalizing on G4PID, we devised a tailored approach termed G-quadruplex-interacting proteins specific biotin-ligation procedure (PLGPB) to precisely profile G4-interacting proteins. Implementing this innovative strategy in live cells, we unveiled a cohort of 149 potential G4-interacting proteins, which exhibiting multifaceted functionalities. We then substantiate the directly binding affinity of 7 candidate G4-interacting-proteins (SF3B4, FBL, PP1G, BCL7C, NDUV1, ILF3, GAR1) in vitro. Remarkably, we verified that splicing factor 3B subunit 4 (SF3B4) binds preferentially to the G4-rich 3' splice site and the corresponding splicing sites are modulated by the G4 stabilizer PDS, indicating the regulating role of G4s in mRNA splicing procedure. The PLGPB strategy could biotinylate multiple proteins simultaneously, which providing an opportunity to map G4-interacting proteins network in living cells.


Asunto(s)
Biotina , G-Cuádruplex , Humanos , Biotina/metabolismo , Unión Proteica , Factores de Empalme de ARN/metabolismo , Ligasas de Carbono-Nitrógeno/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Empalme del ARN , Células HEK293 , Proteínas de Unión al ARN/metabolismo , Células HeLa
2.
Natl Sci Rev ; 11(1): nwae022, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38348130

RESUMEN

Cell-free RNA (cfRNA) allows assessment of health, status, and phenotype of a variety of human organs and is a potential biomarker to non-invasively diagnose numerous diseases. Nevertheless, there is a lack of highly efficient and bias-free cfRNA isolation technologies due to the low abundance and instability of cfRNA. Here, we developed a reproducible and high-efficiency isolation technology for different types of cell-free nucleic acids (containing cfRNA and viral RNA) in serum/plasma based on the inclusion of nucleic acids by metal-organic framework (MOF) materials, which greatly improved the isolation efficiency and was able to preserve RNA integrity compared with the most widely used research kit method. Importantly, the quality of cfRNA extracted by the MOF method is about 10-fold that of the kit method, and the MOF method isolates more than three times as many different RNA types as the kit method. The whole transcriptome mapping characteristics of cfRNA in serum from patients with liver cancer was described and a cfRNA signature with six cfRNAs was identified to diagnose liver cancer with high diagnostic efficiency (area under curve = 0.905 in the independent validation cohort) using this MOF method. Thus, this new MOF isolation technique will advance the field of liquid biopsy, with the potential to diagnose liver cancer.

3.
Nucleic Acids Res ; 51(16): e87, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37470992

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional processing event involved in diversifying the transcriptome and is responsible for various biological processes. In this context, we developed a new method based on the highly selective cleavage activity of Endonuclease V against Inosine and the universal activity of sodium periodate against all RNAs to enrich the inosine-containing RNA and accurately identify the editing sites. We validated the reliability of our method in human brain in both Alu and non-Alu elements. The conserved sites of A-to-I editing in human cells (HEK293T, HeLa, HepG2, K562 and MCF-7) primarily occurs in the 3'UTR of the RNA, which are highly correlated with RNA binding and protein binding. Analysis of the editing sites between the human brain and mouse brain revealed that the editing of exons is more conserved than that in other regions. This method was applied to three neurological diseases (Alzheimer's, epilepsy and ageing) of mouse brain, reflecting that A-to-I editing sites significantly decreased in neuronal activity genes.


Asunto(s)
Edición de ARN , Transcriptoma , Animales , Humanos , Ratones , Inosina/genética , Inosina/metabolismo , Reproducibilidad de los Resultados , Edición de ARN/genética , Transcriptoma/genética , Exones , Línea Celular
4.
J Am Chem Soc ; 145(9): 5467-5473, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36820840

RESUMEN

Hundreds of modified bases have been identified and enzymatically modified to transfer RNAs (tRNAs) to regulate RNA function in various organisms. 2-Methylthio-N6-isopentenyladenosine (ms2i6A), a hypermodified base found at tRNA position 37, exists in both prokaryotes and eukaryotes. ms2i6A is traditionally identified by separating and digesting each tRNA from total RNA using RNA mass spectrometry. A transcriptome-wide and single-base resolution method that enables absolute mapping of ms2i6A along with analysis of its distribution in different RNAs is lacking. Here, through chemoselective methylthio group bioconjugation, we introduce a new approach (redox activated chemical tagging sequencing, ReACT-seq) to detect ms2i6A transcriptome-wide at single-base resolution. Using the chemoselectivity between the methylthio group and oxaziridine group, ms2i6A is bio-orthogonally tagged with an azide group without interference of canonical nucleotides, advancing enrichment of methylthio group modified RNAs prior to sequencing. ReACT-seq was demonstrated on nine known tRNAs and proved to be highly accurate, and the reverse transcription stop (RT-stop) character enables ReACT-seq detection at single-base resolution. In addition, ReACT-seq identified that the modification of ms2i6A is conservative and may not exist in other RNAs.


Asunto(s)
Isopenteniladenosina , Transcriptoma , Isopenteniladenosina/química , ARN de Transferencia/genética , ARN de Transferencia/química
6.
Chem Sci ; 13(41): 12149-12157, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36349098

RESUMEN

Studies of chemical modifications on RNA have ushered in the field of epitranscriptomics. N 6-Methyladenosine (m6A) is the most typical RNA modification and is indispensable for basic biological processes. This study presents a chemical pulldown method (m6A-ORL-Seq) for transcriptome-wide profiling of m6A. Moreover, chemical labeling results in a specific reverse transcription (RT) truncation signature. This study has identified four thousand high-confidence m6A sites at single-base resolution in the human transcriptome. Unlike previously reported methods based on m6A-antibody or m6A-sensitive enzymes, the antibody/enzyme-free chemical method provides a new perspective for single-base m6A detection at the transcriptome level.

7.
ACS Chem Biol ; 17(1): 77-84, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34846122

RESUMEN

5-Formylcytidine (f5C) is one type of post-transcriptional RNA modification, which is known at the wobble position of tRNA in mitochondria and essential for mitochondrial protein synthesis. Here, we show a method to detect f5C modifications in RNA and a transcriptome-wide f5C mapping technique, named f5C-seq. It is developed based on the treatment of pyridine borane, which can reduce f5C to 5,6-dihydrouracil, thus inducing C-to-T transition in f5C sites during PCR to achieve single-base resolution detection. More than 1000 f5C sites were identified after mapping in Saccharomyces cerevisiae by f5C-seq. Moreover, codon composition demonstrated a preference for f5C within wobble sites in mRNA, suggesting the potential role in regulation of translation. These findings expand the scope of the understanding of cytosine modifications in mRNA.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/química , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Secuencia de Bases , Citidina/análogos & derivados , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Humanos , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Mensajero/genética , Saccharomyces cerevisiae/genética
8.
Anal Chem ; 93(46): 15445-15451, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34775754

RESUMEN

Albeit with low content, 5-formyluracil has been an important modification in genomic DNA. 5-formyluracil was found to be widely distributed among living bodies. Due to the equilibrium of keto-enol form, 5-formyluracil could be base-paired with guanine, thus inducing mutations in DNA. The highly reactive aldehyde group of 5-formyluracil could also cross-link with proteins nearby, preventing gene replication and expression. In certain cancerous tissues, the content of 5-formyluracil was found to be higher than the normal tissues adjacent to the tumor, and 5-formyluracil might be an important potential epigenetic mark. Nevertheless, the lack of a higher resolution sequencing technique has hampered the studies of 5-formyluracil. We adjusted the base-pairing of 5-formyluracil during the PCR amplification by changing the pH. Hence, we adopted the Alkaline Modulated 5-formyluracil Sequencing (AMfU-Seq), a single-base resolution analysis method, to profile 5-formyluracil at the genome scale. We analyzed the distribution of 5-formyluracil in the human thyroid carcinoma cells using AMfU-Seq. This technique can be used in the future investigations of 5-formyluracil.


Asunto(s)
ADN , Uracilo , ADN/genética , Genómica , Guanina , Humanos , Uracilo/análogos & derivados
9.
Nat Commun ; 12(1): 5629, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34561445

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is a novel tick-borne infectious disease caused by a new type of SFTS virus (SFTSV). Here, a longitudinal sampling study is conducted to explore the differences in transcript levels after SFTSV infection, and to characterize the transcriptomic and epigenetic profiles of hospitalized patients. The results reveal significant changes in the mRNA expression of certain genes from onset to recovery. Moreover, m6A-seq reveals that certain genes related with immune regulation may be regulated by m6A. Besides the routine tests such as platelet counts, serum ALT and AST levels testing, distinct changes in myocardial enzymes, coagulation function, and inflammation are well correlated with the clinical data and sequencing data, suggesting that clinical practitioners should monitor the above indicators to track disease progression and guide personalized treatment. In this study, the transcript changes and RNA modification may lend a fresh perspective to our understanding of the SFTSV and play a significant role in the discovery of drugs for effective treatment of this disease.


Asunto(s)
Epigénesis Genética , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Síndrome de Trombocitopenia Febril Grave/genética , Transcriptoma , Anciano , Alanina Transaminasa/sangre , Antivirales/uso terapéutico , Aspartato Aminotransferasas/sangre , Creatinina/sangre , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Phlebovirus/efectos de los fármacos , Phlebovirus/fisiología , RNA-Seq/métodos , Muestreo , Síndrome de Trombocitopenia Febril Grave/tratamiento farmacológico , Síndrome de Trombocitopenia Febril Grave/virología
10.
ACS Cent Sci ; 7(6): 973-979, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34235258

RESUMEN

Deamination of cytosine and dUMP misincorporation have been found to be capable of producing uracil in the genome. This study presents the AI-seq (artificial incorporation modified nucleobase for sequencing), a "base substitution", which not only is capable of profiling uracil at single-nucleotide resolution and showing its centromeric enrichment but could also reveal that the identified uracil sites are derived from cytosine deamination. All the results indicate the potential biological significance of uracil as the epigenetic modification.

11.
Theor Appl Genet ; 134(8): 2517-2530, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33895853

RESUMEN

KEY MESSAGE: A major QTL controlling ovule abortion and SN was fine-mapped to a 80.1-kb region on A8 in rapeseed, and BnaA08g07940D and BnaA08g07950D are the most likely candidate genes. The seed number per silique (SN), an important yield determining trait of rapeseed, is the final consequence of a complex developmental process including ovule initiation and the subsequent ovule/seed development. To explore the genetic mechanism regulating the natural variation of SN and its related components, quantitative trait locus (QTL) mapping was conducted using a doubled haploid (DH) population derived from the cross between C4-146 and C4-58B, which showed significant differences in SN and aborted ovule number (AON), but no obvious differences in ovule number (ON). QTL analysis identified 19 consensus QTLs for six SN-related traits across three environments. A novel QTL on chromosome A8, un.A8, which associates with multiple traits, except for ON, was stably detected across the three environments. This QTL explained more than 50% of the SN, AON and percentage of aborted ovules (PAO) variations as well as a moderate contribution on silique length (SL) and thousand seed weight (TSW). The C4-146 allele at the locus increases SN and SL but decreases AON, PAO and TSW. Further fine mapping narrowed down this locus into an 80.1-kb interval flanked by markers BM1668 and BM1672, and six predicted genes were annotated in the delimited region. Expression analyses and DNA sequencing showed that two homologs of Arabidopsis photosystem I subunit F (BnaA08g07940D) and zinc transporter 10 precursor (BnaA08g07950D) were the most promising candidate genes underlying this locus. These results provide a solid basis for cloning un.A8 to reduce the ovule abortion and increase SN in the yield improvement of rapeseed.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Óvulo Vegetal/fisiología , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Brassica napus/genética , Clonación Molecular , Fenotipo , Proteínas de Plantas/genética , Semillas/genética
12.
J Am Chem Soc ; 143(4): 1917-1923, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33471508

RESUMEN

G-Quadruplex (G4) is a noncanonical nucleic acid secondary structure with multiple biofunctions. Identifying G4-related proteins (G4RPs) is important for understanding the roles of G4 in biology. Current methods to identify G4RPs include discovery from specific biological processes or in vitro pull-down assays with specific G4 sequences. Here, we report an in vivo strategy used to identify G4RPs with extensive sequence tolerance based on G4 ligand-mediated cross-linking. Applying this method, we identified 114 and 281 G4RPs in SV589 and MM231 cells, respectively. The results successfully overlapped with all the pull-down assay literature. Through the electrophoretic mobility shift assay (EMSA), we identified some new G4-binding proteins. Moreover, enhanced cross-linking and immunoprecipitation (eCLIP) confirmed that one newly identified G4-binding protein, SERBP1, interacts with G4 in the cellular environment. The method we developed provides a new strategy for identifying proteins that interact with nucleic secondary structures in cells and benefit the study of their biological roles.


Asunto(s)
G-Cuádruplex , Línea Celular Tumoral , Ensayo de Cambio de Movilidad Electroforética , Humanos , Inmunoprecipitación , Ligandos , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Proteómica
13.
Theor Appl Genet ; 131(12): 2699-2708, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30219987

RESUMEN

KEY MESSAGE: BnA10.LMI1 positively regulates the development of leaf lobes in Brassica napus, and cis-regulatory divergences cause the different allele effects. Leaf shape is an important agronomic trait, and large variations in this trait exist within the Brassica germplasm. The lobed leaf is a unique morphological characteristic for Brassica improvement. Nevertheless, the molecular basis of leaf lobing in Brassica is poorly understood. Here, we show that an incompletely dominant locus, BnLLA10, is responsible for the lobed-leaf shape in rapeseed. A LATE MERISTEM IDENTITY1 (LMI1)-like gene (BnA10.LMI1) encoding an HD-Zip I transcription factor is the causal gene underlying the BnLLA10 locus. Sequence analysis of parental alleles revealed no sequence variations in the coding sequences, whereas abundant variations were identified in the regulatory region. Consistent with this finding, the expression levels of BnLMI1 were substantially elevated in the lobed-leaf parent compared with its near-isogenic line. The knockout mutations of BnA10.LMI1 gene were induced using the CRISPR/Cas9 system in both HY (the lobed-leaf parent) and J9707 (serrated leaf) genetic backgrounds. BnA10.LMI1 null mutations in the HY background were sufficient to produce unlobed leaves, whereas null mutations in the J9707 background showed no obvious changes in leaf shape compared with the control. Collectively, our results indicate that BnA10.LMI1 positively regulates the development of leaf lobes in B. napus, with cis-regulatory divergences causing the different allelic effects, providing new insights into the molecular mechanism of leaf lobe formation in Brassica crops.


Asunto(s)
Brassica napus/genética , Genes Homeobox , Genes de Plantas , Hojas de la Planta/anatomía & histología , Regiones Promotoras Genéticas , Alelos , Secuencia de Aminoácidos , Brassica napus/anatomía & histología , Sistemas CRISPR-Cas , Mapeo Cromosómico , Ligamiento Genético , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética
14.
Plant Biotechnol J ; 16(7): 1322-1335, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29250878

RESUMEN

Multilocular silique is a desirable agricultural trait with great potential for the development of high-yield varieties of Brassica. To date, no spontaneous or induced multilocular mutants have been reported in Brassica napus, which likely reflects its allotetraploid nature and the extremely low probability of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we present evidence for the efficient knockout of rapeseed homologues of CLAVATA3 (CLV3) for a secreted peptide and its related receptors CLV1 and CLV2 in the CLV signalling pathway using the CRISPR/Cas9 system and achieved stable transmission of the mutations across three generations. Each BnCLV gene has two copies located in two subgenomes. The multilocular phenotype can be recovered only in knockout mutations of both copies of each BnCLV gene, illustrating that the simultaneous alteration of multiple gene copies by CRISPR/Cas9 mutagenesis has great potential in generating agronomically important mutations in rapeseed. The mutagenesis efficiency varied widely from 0% to 48.65% in T0 with different single-guide RNAs (sgRNAs), indicating that the appropriate selection of the sgRNA is important for effectively generating indels in rapeseed. The double mutation of BnCLV3 produced more leaves and multilocular siliques with a significantly higher number of seeds per silique and a higher seed weight than the wild-type and single mutant plants, potentially contributing to increased seed production. We also assessed the efficiency of the horizontal transfer of Cas9/gRNA cassettes by pollination. Our findings reveal the potential for plant breeding strategies to improve yield traits in currently cultivated rapeseed varieties.


Asunto(s)
Brassica napus/genética , Técnicas de Inactivación de Genes , Genes de Plantas/genética , Semillas/genética , Brassica napus/crecimiento & desarrollo , Brassica napus/metabolismo , Técnicas de Inactivación de Genes/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carácter Cuantitativo Heredable , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA