Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mycology ; 14(3): 155-174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583458

RESUMEN

An entry postal parcel with mature nuts of Phytelephas macrocarpa from Togo was inspected at Dalian Customs (China) in December 2021, and four strains were isolated from symptomatic tissues of the nuts. Based on morphological observations and molecular phylogenetic analyses, above strains were identified as a new species which is mainly characterised by the verticillately branching conidiophores. Based on multi-locus phylogenetic analyses, this new species forms a monophyletic clade closely related to Corallomycetella, Paracremonium and Xenoacremonium but could not be accommodated in any known genera of Nectriaceae. Thus, a new genus Heteroverticillium is established to accommodate this new species (H. phytelephatis). To our knowledge, this is the first time that Chinese customs have intercepted a new fungal genus. In addition, we provided an updated backbone tree for the generic relationships in Nectriaceae, which may largely assist future identification of nectriaceous fungi to genus level in quarantine inspections. Based on our analysis, Varicosporellopsis is likely a late synonym of Paracremonium.

2.
Mol Ecol Resour ; 23(3): 601-620, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36403246

RESUMEN

Rust fungi are characterized by large genomes with high repeat content and have two haploid nuclei in most life stages, which makes achieving high-quality genome assemblies challenging. Here, we described a pipeline using HiFi reads and Hi-C data to assemble a gigabase-sized fungal pathogen, Puccinia polysora f.sp. zeae, to haplotype-phased and chromosome-scale. The final assembled genome is 1.71 Gbp, with ~850 Mbp and 18 chromosomes in each haplotype, being currently one of the two giga-scale fungi assembled to chromosome level. Transcript-based annotation identified 47,512 genes for the dikaryotic genome with a similar number for each haplotype. A high level of interhaplotype variation was found with 10% haplotype-specific BUSCO genes, 5.8 SNPs/kbp, and structural variation accounting for 3% of the genome size. The P. polysora genome displayed over 85% repeat contents, with genome-size expansion and copy number increasing of species-specific orthogroups. Interestingly, these features did not affect overall synteny with other Puccinia species having smaller genomes. Fine-time-point transcriptomics revealed seven clusters of coexpressed secreted proteins that are conserved between two haplotypes. The fact that candidate effectors interspersed with all genes indicated the absence of a "two-speed genome" evolution in P. polysora. Genome resequencing of 79 additional isolates revealed a clonal population structure of P. polysora in China with low geographic differentiation. Nevertheless, a minor population differentiated from the major population by having mutations on secreted proteins including AvrRppC, indicating the ongoing virulence to evade recognition by RppC, a major resistance gene in Chinese corn cultivars. The high-quality assembly provides valuable genomic resources for future studies on disease management and the evolution of P. polysora.


Asunto(s)
Basidiomycota , Puccinia , Puccinia/genética , Haplotipos , Zea mays/genética , Basidiomycota/genética , Cromosomas , Genoma Fúngico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...