Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 190: 35-47, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593639

RESUMEN

BACKGROUND: Exosomes released by cardiomyocytes are essential mediators of intercellular communications within the heart, and various exosomal proteins and miRNAs are associated with cardiovascular diseases. However, whether the endosomal sorting complex required for transport (ESCRT) and its key component Alix is required for exosome biogenesis within cardiomyocyte remains poorly understood. METHODS: Super-resolution imaging was performed to investigate the subcellular location of Alix and multivesicular body (MVB) in primary cardiomyocytes. Cardiomyocyte-specific Alix-knockout mice were generated using AAV9/CRISPR/Cas9-mediated in vivo gene editing. A stable Alix-knockdown H9c2 cardiomyocyte line was constructed through lentiviral-mediated delivery of short hairpin RNA. In order to determine the role of Alix in controlling exosome biogenesis, exosomes from cardiomyocyte-specific Alix-knockout mice plasma and Alix-knockdown H9c2 culture medium were isolated and examined by western blot, NTA analysis and transmission electron microscopy. Biochemical and immunofluorescence analysis were performed to determine the role of ESCRT machinery in regulating MVB formation. Lastly, transverse aortic constriction (TAC)-induced cardiac pressure overload model was established to further explore the role of Alix-mediated exosome biogenesis under stress conditions. RESULTS: A significant proportion of Alix localized to the MVB membrane within cardiomyocytes. Genetic deletion of Alix in murine heart resulted in a reduction of plasma exosome content without affecting cardiac structure or contractile function. Consistently, the downregulation of Alix in H9c2 cardiomyocyte line also suppressed the biogenesis of exosomes. We found the defective ESCRT machinery and suppressed MVB formation upon Alix depletion caused compromised exosome biogenesis. Remarkably, TAC-induced cardiac pressure overload led to increased Alix, MVB levels, and elevated plasma exosome content, which could be totally abolished by Alix deletion. CONCLUSION: These results establish Alix as an essential and stress-sensitive regulator of cardiac exosome biogenesis and the findings may yield valuable therapeutic implications.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Exosomas , Ratones Noqueados , Miocitos Cardíacos , Estrés Fisiológico , Miocitos Cardíacos/metabolismo , Animales , Exosomas/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Ratones , Cuerpos Multivesiculares/metabolismo , Línea Celular , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Ratas
2.
Circulation ; 149(17): 1375-1390, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38214189

RESUMEN

BACKGROUND: Cardiac transverse tubules (T-tubules) are anchored to sarcomeric Z-discs by costameres to establish a regular spaced pattern. One of the major components of costameres is the dystrophin-glycoprotein complex (DGC). Nevertheless, how the assembly of the DGC coordinates with the formation and maintenance of T-tubules under physiological and pathological conditions remains unclear. METHODS: Given the known role of Ptpn23 (protein tyrosine phosphatase, nonreceptor type 23) in regulating membrane deformation, its expression in patients with dilated cardiomyopathy was determined. Taking advantage of Cre/Loxp, CRISPR/Cas9, and adeno-associated virus 9 (AAV9)-mediated in vivo gene editing, we generated cardiomyocyte-specific Ptpn23 and Actn2 (α-actinin-2, a major component of Z-discs) knockout mice. We also perturbed the DGC by using dystrophin global knockout mice (DmdE4*). MM 4-64 and Di-8-ANEPPS staining, Cav3 immunofluorescence, and transmission electron microscopy were performed to determine T-tubule structure in isolated cells and intact hearts. In addition, the assembly of the DGC with Ptpn23 and dystrophin loss of function was determined by glycerol-gradient fractionation and SDS-PAGE analysis. RESULTS: The expression level of Ptpn23 was reduced in failing hearts from dilated cardiomyopathy patients and mice. Genetic deletion of Ptpn23 resulted in disorganized T-tubules with enlarged diameters and progressive dilated cardiomyopathy without affecting sarcomere organization. AAV9-mediated mosaic somatic mutagenesis further indicated a cell-autonomous role of Ptpn23 in regulating T-tubule formation. Genetic and biochemical analyses showed that Ptpn23 was essential for the integrity of costameres, which anchor the T-tubule membrane to Z-discs, through interactions with α-actinin and dystrophin. Deletion of α-actinin altered the subcellular localization of Ptpn23 and DGCs. In addition, genetic inactivation of dystrophin caused similar T-tubule defects to Ptpn23 loss-of-function without affecting Ptpn23 localization at Z-discs. Last, inducible Ptpn23 knockout at 1 month of age showed Ptpn23 is also required for the maintenance of T-tubules in adult cardiomyocytes. CONCLUSIONS: Ptpn23 is essential for cardiac T-tubule formation and maintenance along Z-discs. During postnatal heart development, Ptpn23 interacts with sarcomeric α-actinin and coordinates the assembly of the DGC at costameres to sculpt T-tubule spatial patterning and morphology.

3.
Redox Biol ; 62: 102675, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933392

RESUMEN

The decreased antioxidant capacity in the retinal pigment epithelium (RPE) is the hallmark of retinal degenerative diseases including age-related macular degeneration (AMD). Nevertheless, the exact regulatory mechanisms underlying the pathogenesis of retinal degenerations remain largely unknown. Here we show in mice that deficiencies in Dapl1, a susceptibility gene for human AMD, impair the antioxidant capacity of the RPE and lead to age-related retinal degeneration in the 18-month-old mice homozygous for a partial deletion of Dapl1. Dapl1-deficiency is associated with a reduction of the RPE's antioxidant capacity, and experimental re-expression of Dapl1 reverses this reduction and protects the retina from oxidative damage. Mechanistically, DAPL1 directly binds the transcription factor E2F4 and inhibits the expression of MYC, leading to upregulation of the transcription factor MITF and its targets NRF2 and PGC1α, both of which regulate the RPE's antioxidant function. When MITF is experimentally overexpressed in the RPE of DAPL1 deficient mice, antioxidation is restored and retinas are protected from degeneration. These findings suggest that the DAPL1-MITF axis functions as a novel regulator of the antioxidant defense system of the RPE and may play a critical role in the pathogenesis of age-related retinal degenerative diseases.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Ratones , Antioxidantes/metabolismo , Línea Celular , Degeneración Macular/genética , Degeneración Macular/patología , Proteínas de la Membrana/metabolismo , Estrés Oxidativo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Factores de Transcripción/metabolismo
4.
Cell Death Dis ; 14(2): 158, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841807

RESUMEN

Epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is a hallmark of the pathogenesis of proliferative vitreoretinopathy (PVR) that can lead to severe vision loss. Nevertheless, the precise regulatory mechanisms underlying the pathogenesis of PVR remain largely unknown. Here, we show that the expression of death-associated protein-like 1 (DAPL1) is downregulated in PVR membranes and that DAPL1 deficiency promotes EMT in RPE cells in mice. In fact, adeno-associated virus (AAV)-mediated DAPL1 overexpression in RPE cells of Dapl1-deficient mice inhibited EMT in physiological and retinal-detachment states. In a rabbit model of PVR, ARPE-19 cells overexpressing DAPL1 showed reduced ability to induce experimental PVR, and AAV-mediated DAPL1 delivery attenuated the severity of experimental PVR. Furthermore, a mechanistic study revealed that DAPL1 promotes P21 phosphorylation and its stabilization partially through NFκB (RelA) in RPE cells, whereas the knockdown of P21 led to neutralizing effects on DAPL1-dependent EMT inhibition and enhanced the severity of experimental PVR. These results suggest that DAPL1 acts as a novel suppressor of RPE-EMT and has an important role in antagonizing the pathogenesis of experimental PVR. Hence, this finding has implications for understanding the mechanism of and potential therapeutic applications for PVR.


Asunto(s)
Proteínas de la Membrana , Epitelio Pigmentado de la Retina , Vitreorretinopatía Proliferativa , Animales , Ratones , Conejos , Transición Epitelial-Mesenquimal , Epitelio Pigmentado de la Retina/metabolismo , Vitreorretinopatía Proliferativa/tratamiento farmacológico , Vitreorretinopatía Proliferativa/metabolismo , Vitreorretinopatía Proliferativa/patología , Proteínas de la Membrana/metabolismo
5.
Redox Biol ; 34: 101537, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32361183

RESUMEN

Oxidative damage is one of the major contributors to retinal degenerative diseases such as age-related macular degeneration (AMD), while RPE mediated antioxidant defense plays an important role in preventing retinopathies. However, the regulatory mechanisms of antioxidant signaling in RPE cells are poorly understood. Here we show that transcription factor MITF regulates the antioxidant response in RPE cells, protecting the neural retina from oxidative damage. In the oxidative stress-induced retinal degeneration mouse model, retinal degeneration in Mitf+/- mice is significantly aggravated compared to WT mice. In contrast, overexpression of Mitf in Dct-Mitf transgenic mice and AAV mediated overexpression in RPE cells protect the neural retina against oxidative damage. Mechanistically, MITF both directly regulates the transcription of NRF2, a master regulator of antioxidant signaling, and promotes its nuclear translocation. Furthermore, specific overexpression of NRF2 in Mitf+/- RPE cells activates antioxidant signaling and partially protects the retina from oxidative damage. Taken together, our findings demonstrate the regulation of NRF2 by MITF in RPE cells and provide new insights into potential therapeutic approaches for prevention of oxidative damage diseases.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Animales , Degeneración Macular/genética , Ratones , Factor de Transcripción Asociado a Microftalmía , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Degeneración Retiniana/genética , Epitelio Pigmentado de la Retina/metabolismo
6.
Invest Ophthalmol Vis Sci ; 60(13): 4503-4510, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31661551

RESUMEN

Purpose: MicroRNA-34a (miR-34a) has been implicated in many biological processes. It is downregulated in uveal melanoma, and introduction of miR-34a inhibits the proliferation and migration of uveal melanoma cells. Leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) is a novel target of miR-34a identified first in retinal pigment epithelial cells. In this study, we sought to evaluate the interaction of miR-34a and LGR4 in uveal melanoma and its downstream mechanisms. Methods: The expression of LGR4, epithelial-mesenchymal transition (EMT)-associated factors, and matrix metalloproteinase 2 (MMP2) in uveal melanoma cells was assessed by immunoblotting and immunofluorescence analysis. MicroRNA-34a mimic molecules, LGR4 small interfering RNA (siRNA), or MMP2-specific siRNA were transiently transfected into uveal melanoma cells. In vitro scratch and Transwell assays were used to evaluate the migratory and invasive potential of the resultant uveal melanoma cells. Results: LGR4 is upregulated in uveal melanoma cells. Introduction of miR-34a significantly decreased the expression level of LGR4. Transfection with miR-34a or knockdown of LGR4 attenuated the aggressiveness of uveal melanoma cells. In addition, there was a decrease in the expression of mesenchymal markers N-cadherin, vimentin, and Snail following miR-34a introduction or knockdown of LGR4. Finally, MMP2 was found to be a downstream effector for miR-34a and LGR4 that regulates the migration and invasion of uveal melanoma cells. Conclusions: MicroRNA-34a negatively controls LGR4, thereby inhibiting the migration and invasion of uveal melanoma cells. Ultimately, both miR-34a and LGR4 impact the aggressiveness of uveal melanoma with alterations in the markers of the EMT. MMP2 is a downstream effector that influences the metastasis seen with uveal melanoma cells.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Metaloproteinasa 2 de la Matriz/genética , Melanoma/genética , MicroARNs/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias de la Úvea/genética , Movimiento Celular/fisiología , Proliferación Celular , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Melanoma/patología , ARN Interferente Pequeño , Transfección , Células Tumorales Cultivadas , Regulación hacia Arriba , Neoplasias de la Úvea/patología
7.
Front Pharmacol ; 10: 35, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30792653

RESUMEN

Xueshuantong capsule (XST) is a patented traditional Chinese medicine used for the prevention and treatment of thrombosis. The molecular mechanism of anti-thrombotic effect of XST was investigated through the cross-talk among the platelets/leukocytes, endothelial cells (ECs), and flow shear stress. The Bioflux 1000 system was used to generate two levels of shear stress conditions: 0.1 and 0.9 Pa. Bioflux Metamorph microscopic imaging system was used to analyze the adhesion cell numbers. Protein expressions were detected by western blotting and flow cytometry. The flow-cytometry results showed that under 0.1 Pa flow, XST decreased ADP induced platelets CD62p surface expression in a concentration-dependent manner. Under 0.9 Pa flow, XST at a concentration of 0.15 g⋅L-1 reduced the platelets activation by 29.5%, and aspirin (ASA) showed no inhibitory effects. XST showed similar efficiency on monocytes adhesion both under 0.1 and 0.9 Pa flow conditions, and the inhibition rate was 30.2 and 28.3%, respectively. Under 0.9 Pa flow, the anti-adhesive effects of XST might be associated with the suppression of VE-cadherin and Cx43 in HUVECs. Blood flow not only acts as a drug transporter, but also exerts its effects to influence the pharmacodynamics of XST. Effects of XST on inhibiting platelets activation and suppressing platelets/leukocytes adhesion to injured ECs are not only concentration-dependent, but also shear stress-dependent. The mechanic forces combined with traditional Chinese medicine may be used as a precise treatment for cardiovascular diseases.

8.
Early Interv Psychiatry ; 12(1): 15-21, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-26403435

RESUMEN

AIM: Previous evidence has found that some single nucleotide polymorphisms (SNPs) in cardiomyopathy-associated 5 gene (CMYA5) were associated with schizophrenia in the Caucasian and Chinese Han populations. In this study, we aimed to investigate the relationship between CMYA5 gene polymorphisms and schizophrenia in Chinese Uygur population and perform a meta-analysis to synthetically analyse the association of CMYA5 gene polymorphisms with schizophrenia in Asian populations. METHOD: We retrospectively analysed 985 schizophrenia cases and 1123 healthy controls in Chinese Uygur population. Four SNPs (rs259127, rs3828611, rs4704591 and rs6883197) of CMYA5 were genotyped using TaqMan SNP genotyping assay. Meta-analysis was conducted across Asian studies by Review Manager 5.2. RESULTS: Results showed no significant difference in either allelic or genotypic frequency in four SNPs of the CMYA5 gene between cases and controls (P > 0.05). However, the age of onset and the PANSS positive-factor subscale score were significantly lower in schizophrenia patients with the A/A genotype of rs6883197 than those with A/G and G/G genotypes (P < 0.05). In addition, the meta-analysis showed the significant association of rs3828611 with risk of schizophrenia (P = 0.03, OR = 0.92, 95% CI: 0.91-0.99). CONCLUSIONS: Our results support the association between CMYA5 rs6883197 and schizophrenia in Chinese Uygur population. Meta-analysis demonstrated that rs3828611 was significantly associated with schizophrenia in Asian population. Genetic heterogeneity among populations may be the main reason of results conflict between studies. In conclusion, association between CMYA5 gene polymorphisms and schizophrenia was confirmed in Asian population.


Asunto(s)
Pueblo Asiatico/genética , Predisposición Genética a la Enfermedad/genética , Proteínas Musculares/genética , Esquizofrenia/genética , Adulto , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Estudios Retrospectivos
9.
Zhongguo Zhong Yao Za Zhi ; 42(2): 341-346, 2017 Jan.
Artículo en Chino | MEDLINE | ID: mdl-28948741

RESUMEN

To investigate the anti-platelet adhesive effect and possible mechanisms of Xueshuantong capsule (XST) under flow conditions. Human umbilical vein endothelial cells (HUVECs) and human platelets were employed as experimental materials, and TNF-α (20 µg•L⁻¹) was used to establish vascular endothelial cell injury models. In vivo flow conditions were simulated under controlled shear stress of 0.1 Pa and 0.9 Pa by Bioflux1000 assays accordingly. Anti-platelet adhesive effects of XST at 0.3 g•L⁻¹ were dynamically monitored by microscopic time-lapse photography. Western blotting was employed to detect the VCAM-1 expression on endothelial cells, and the release of 6-keto-PGF1α and TXB2 was tested by radioimmunoassay. The results showed that XST could inhibit the platelets adhesion under both physiological and pathological flow conditions, and the inhibition rate was 15.0% and 34.1% respectively. Under pathological low shear stress or static conditions, XST could significantly inhibit endothelial cells VCAM-1 expression and TXB2 release (P<0.05). These results suggested that XST inhibited platelets adhering to injured endothelium via decreasing VCAM-1 expression and TXA2 secretion from endothelium. From the interactions among blood flow, vascular endothelium and platelets, the anti-thrombosis effects of XST were possibly related to endothelial cells protection and therefore inhibiting platelets adhesion. Under different flow conditions, the antiplatelet adhesion effect of XST was different, and the pathological low shear stress was more conducive to the efficacy of XST.


Asunto(s)
Plaquetas/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Fibrinolíticos/farmacología , Adhesividad Plaquetaria/efectos de los fármacos , Cápsulas , Adhesión Celular , Células Cultivadas , Endotelio Vascular , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos
10.
Artículo en Inglés | MEDLINE | ID: mdl-27738446

RESUMEN

Objective. To investigate the absorption property of the representative hydrolyzable tannin, namely corilagin, and its hydrolysates gallic acid (GA) and ellagic acid (EA) from the Fructus Phyllanthi tannin fraction (PTF) in vitro. Methods. Caco-2 cells monolayer model was established. Influences of PTF on Caco-2 cells viability were detected with MTT assay. The transport across monolayers was examined for different time points, concentrations, and secretory directions. The inhibitors of P-glycoprotein (P-gp), multidrug resistance proteins (MRPs), organic anion transporting polypeptide (OATP) and sodium/glucose cotransporter 1 (SGLT1), and tight junction modulators were used to study the transport mechanism. LC-MS method was employed to quantify the absorption concentration. Results. The apparent permeability coefficient (Papp) values of the three compounds were below 1.0 × 10-6 cm/s. The absorption of corilagin and GA were much lower than their efflux, and the uptake of both compounds was increased in the presence of inhibitors of P-gp and MRPs. The absorption of EA was decreased in the company of OATP and SGLT1 inhibitors. Moreover, the transport of corilagin, GA, and EA was enhanced by tight junction modulators. Conclusion. These observations indicated that the three compounds in PTF were transported via passive diffusion combined with protein mediated transport. P-gp and MRPs might get involved in the transport of corilagin and GA. The absorption of EA could be attributed to OATP and SGLT1 protein.

11.
Zhongguo Zhong Yao Za Zhi ; 41(5): 818-822, 2016 Mar.
Artículo en Chino | MEDLINE | ID: mdl-28875633

RESUMEN

PNS (total saponins of Panax notognseng, PNS) has a clear effect and wide application prospect for cardiovascular diseases. At the same time, saponins have hemolytic properties, which are related to its molecular structure type and dosage. On one hand, this article summarizes the research progress of PNS in heart cerebrovascular pharmacology pharmacological in recent five years, a number of studies both in vitro and in vivo for overall body, organs, cells and molecules, show that PNS could improve myocardial and cerebral ischemia injury, and it has effects in resisting thrombosis, inflammation, oxidation, atherosclerosis, and modulating vascular endothelial cells function and improving the cerebral ischemia injury etc. On the other hand, the hemolysis effect of PNS is closely related to its molecular structure type and administrating dosage. Different structures bring about different hemolysis activities. Structure-activity relationship suggests that the length of sugar side chains attached to C-20 and the disaccharide connection mode on C-3 may influence the hemolysis activity of PNS. Within the dose range from 2.5 to 250 mg•L⁻¹, PNS has no hemolysis activity. However, PNS exhibits hemolytic properties at high concentrations(≥500 mg•L⁻¹). Based on the hemolytic or anti-hemolysis characteristics of saponins, and dose-response relationship, the rational clinical application of PNS can be guaranteed by controlling the ratio of hemolytic monosaponins in PNS and improving the hemolytic test method.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Hemolíticos/farmacología , Panax notoginseng/química , Saponinas/farmacología , Animales , Hemolíticos/efectos adversos , Humanos , Panax notoginseng/efectos adversos , Saponinas/efectos adversos
12.
Acta Pharmacol Sin ; 36(6): 758-68, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25864648

RESUMEN

AIM: Fructus phyllanthi tannin fraction (PTF) from the traditional Tibetan medicine Fructus phyllanthi has been found to inhibit lung and liver carcinoma in mice. In this study we investigated the anticancer mechanisms of PTF in human lung squamous carcinoma cells in vitro. METHODS: Human lung squamous carcinoma cell line (NCI-H1703), human large-cell lung cancer cell line (NCI-H460), human lung adenocarcinoma cell line (A549) and human fibrosarcoma cell line (HT1080) were tested. Cell viability was detected with MTT assay. Cell migration and invasion were assessed using a wound healing assay and a transwell chemotaxis chambers assay, respectively. Cell apoptosis was analyzed with flow cytometric analysis. The levels of apoptosis-related and metastasis-related proteins were detected by Western blot and immunofluorescence. RESULTS: PTF dose-dependently inhibited the viability of the 3 human lung cancer cells. The IC50 values of PTF in inhibition of NCI-H1703, NCI-H460, and A549 cells were 33, 203, and 94 mg/L, respectively. PTF (15, 30, and 60 mg/L) dose-dependently induced apoptosis of NCI-H1703 cells. Treatment of NCI-H1703 and HT1080 cells with PTF significantly inhibited cell migration, and reduced the number of invasive cells through Matrigel. Furthermore, PTF dose-dependently down-regulated the expression of phosphor-ERK1/2, MMP-2 and MMP-9, up-regulated the expression of phosphor-JNK, but had no significant effect on the expression of ERK1/2 or JNK. CONCLUSION: PTF induces cell apoptosis and inhibits the migration and invasion of NCI-H1703 cells by decreasing MPPs expression through regulation of the MAPK pathway.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Taninos/farmacología , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Concentración 50 Inhibidora , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Medicina Tradicional Tibetana , Invasividad Neoplásica , Fosforilación , Factores de Tiempo
13.
Zhongguo Zhong Yao Za Zhi ; 40(23): 4597-602, 2015 Dec.
Artículo en Chino | MEDLINE | ID: mdl-27141669

RESUMEN

A in vitro platelet aggregation bioassay was developed for the quality control of XST capsules. The in vitro anti-platelet aggregation effect in rats was observed to detect the bioactivity of XST capsules. Panax notoginseng saponins and Xuesaitong lyophilizedpowder for injection were taken as standard control substances to determine the potency. According to the results, XST capsules showeda significant inhibitory effect on thrombin-induced platelet aggregation in a dose-dependent manner. The in vitro anti-platelet activity oflyophilized powder for injection was stabler than that of Panax notoginseng saponins, and so suitable to serve as a standard control substance. The biological potency of XST capsules compared with standard control substance was detected by using parallel line assay. According to the results, the established bioassay method had a good repeatability (RSD 2.92%). The sample test results could pass thereliability test(linear deviation P > 0.05, parallel deviation P > 0.05). This bioassay method could be used as one of the complementary quality control methods for XST capsules.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Panax notoginseng/química , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Animales , Cápsulas/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Saponinas/farmacología
14.
Shanghai Arch Psychiatry ; 26(5): 288-93, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25477722

RESUMEN

BACKGROUND: The rs10761482 polymorphism of the ANK3 gene has been associated with the occurrence of schizophrenia. AIM: Assess the relationship between the ANK3 gene and schizophrenia in individuals of Uyghurian descent. METHODS: A total of 630 patients with schizophrenia and 535 healthy controls of Uyghur descent were genotyped for the ANK3 gene rs10761482 locus using Taqman probe technology. SHEsis and SPSS17.0 software were used for data analysis. RESULTS: There were no significant differences in the genotype or allele frequencies between the case group and control group. Within the case group there was no relationship between gender or age of onset of schizophrenia and the genotype or allele frequencies. Separate analyses among men and among women also failed to identify significant differences in the allele and genotype frequencies between cases and controls or between patients with adolescent-onset schizophrenia and those with adult-onset schizophrenia. CONCLUSION: Our findings do not support previous reports about the relationship of the ANK3 gene and schizophrenia. In the Uyghur nationality group recruited for this study there was no significant association between the ANK3 gene rs10761482 polymorphism and schizophrenia. If these results are replicated in further studies, then the focus should change to understanding why this widely acknowledged association does not exist in this particular ethnic group.

15.
Hereditas ; 151(6): 140-4, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25588301

RESUMEN

GRM8 is a schizophrenia candidate gene that is also thought to be involved in the glutamate pathway, which is very important in the pathogenesis of schizophrenia. In this study, we aim to investigate the association between GRM8 and schizophrenia in the Uygur Chinese population. Rs2237748 and rs2299472, located in the GRM8 gene, were selected for genotyping in a set of Uygur Chinese case-control samples, which included 723 cases and 561 controls, using TaqMan assays and capillary sequencing. The statistical analysis was carried out using the online software program SHEsis, and a meta-analysis was carried out to identify other relevant studies using Review Manager 5. We found that the rs2299472 genotype was significantly associated with schizophrenia (P = 0.015, P = 0.030, after Bonferroni correction). The frequency of the CC genotype was higher in the schizophrenic patients (P = 0.008), and the frequency of the AC genotype was lower (P = 0.008). Furthermore, the meta-analysis incorporating the previous and current studies also showed that rs2299472 is associated with schizophrenia. This study indicates that the GRM8 gene may play an important role in the pathogenesis of schizophrenia.


Asunto(s)
Pueblo Asiatico/genética , Polimorfismo de Nucleótido Simple , Receptores de Glutamato Metabotrópico/genética , Esquizofrenia/genética , Adulto , Estudios de Casos y Controles , Etnicidad , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Esquizofrenia/etnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA