Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Front Pharmacol ; 15: 1419609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148553

RESUMEN

Introduction: Snakebites are acute systemic toxic diseases caused by snake venom entering the body through wounds. Failure to use antivenom immediately and difficulty in obtaining antivenoms are frequently responsible for worsening disease. Traditional Chinese medicine is commonly used to supplement and replace antivenom in treating snakebites. The Jidesheng snake pill (JDS) is a widely used traditional Chinese medicine that has achieved good clinical therapeutic effects; however, its mechanism remains unclear. Therefore, metabolomics techniques were employed to explore the pathophysiological mechanisms of JDS treatment of Agkistrodon halys (Ah) snake venom-poisoned mice. Methods: The Ah group mouse model was established by intramuscular injection of Ah venom into the hind legs of the mice. The Ah venom + JDS group model was established using JDS after the affected area was treated with Ah venom. Hematoxylin and eosin (HE) staining was used to evaluate the severity of gastrocnemius injury. Quantitative polymerase chain reaction (qPCR) was utilized to detect the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), muscle-specific creatine kinase (CKM), thrombin antithrombin complex (TAT), and tumor necrosis factor-alpha (TNF-α). Gas chromatography-mass spectrometry (GC-MS) was performed with multivariate statistical analysis to provide new insights into the global metabolic profile of Ah venom-poisoned mice. Results: HE staining revealed increased red cell necrosis, local hemorrhage, and neutrophil infiltration in the Ah venom group than in the control group. Several compounds were identified, including lipids, amino acids, peptides, and organooxygen. Eighty differential metabolites were screened between the control group and the Ah venom group, and 24 were screened between the Ah venom and JDS groups. The mechanism of Ah venom poisoning in mice may involve aminoacyl-tRNA biosynthesis, various amino acid metabolism disorders, tricarboxylic acid circulation disorders, and abnormal fatty acid metabolism. JDS may reduce symptoms by affecting long-chain fatty acid and amino acid metabolism and promoting nicotinamide-nicotinamide metabolism. Conclusion: Our results suggest that metabolomics has huge prospects for elucidating the pathophysiology of Agkistrodon haly venom poisoning and therapeutic mechanisms of JDS.

2.
Biol Reprod ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073898

RESUMEN

Preeclampsia (PE) is a multisystem pregnancy disorder characterized by impaired remodeling of placental spiral arteries, which leads to the release of pro-inflammatory cytokines and anti-angiogenic agents. However, treatment options for PE are limited, with termination of pregnancy being the only curative option. In this work, we investigated the effects of human amniotic epithelial cells (hAECs) in PE rat model. The rats were induced with Lipopolysaccharide (LPS) on gestational day (GD) 14.5 followed by injection of hAECs and human umbilical cord mesenchymal stem cells (hUC-MSCs) 24 hours later. The hAECs treatment resulted in a reduction in blood pressure and proteinuria in the PE rat model. Futhermore, hAECs treatmentdecreased levels of pro-inflammatory cytokines, reduced inflammatory cells aggregation, and alleviated the damage to placental spiral arteries by downregulating the expression of anti-angiogenic factor and upregulating proangiogenic factor. In vitro experiments comfirmed that hAECs treatment restored the proliferation, migration, and angiogenesis of LPS-damaged human umbilical vein endothelial cells (hUVECs). Additionally, hAECs treatmenthad positive effects on fetal weight and neurological development in the PE group, with no negative effects onthe physical development or fertility of offspring rats. These results suggested that hAECs transplantation may be a novel adjuvant therapeutic strategy for PE by reducing the inflammatory andenhancing placental spiral artery angiogenesis.

3.
Free Radic Biol Med ; 222: 424-436, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960008

RESUMEN

Abnormal polarization of adipose tissue macrophages (ATMs) results in low-grade systemic inflammation and insulin resistance (IR), potentially contributing to the development of diabetes. However, the underlying mechanisms that regulate the polarization of ATMs associated with gestational diabetes mellitus (GDM) remain unclear. Thus, we aimed to determine the effects of abnormal fatty acids on macrophage polarization and development of insulin resistance in GDM. Levels of fatty acids and inflammation were assessed in the serum samples and adipose tissues of patients with GDM. An in vitro cell model treated with palmitic acid was established, and the mechanisms of palmitic acid in regulating macrophage polarization was clarified. The effects of excessive palmitic acid on the regulation of histone methylations and IR were also explored in the high-fat diet induced GDM mice model. We found that pregnancies with GDM were associated with increased levels of serum fatty acids, and inflammation and IR in adipose tissues. Increased palmitic acid could induce mitochondrial dysfunction and excessive ROS levels in macrophages, leading to abnormal cytoplasmic and nuclear metabolism of succinate and α-ketoglutarate (αKG). Specifically, a decreased nuclear αKG/succinate ratio could attenuate the enrichment of H3K27me3 at the promoters of pro-inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, leading to cytokine secretion. Importantly, GDM mice treated with GSK-J4, an inhibitor of histone lysine demethylase, were protected from abnormal pro-inflammatory macrophage polarization and excessive production of pro-inflammatory cytokines. Our findings highlight the importance of the metabolism of αKG and succinate as transcriptional modulators in regulating the polarization of ATMs and the insulin sensitivity of adipose tissue, ensuring a normal pregnancy. This novel insight sheds new light on gestational fatty acid metabolism and epigenetic alterations associated with GDM.

4.
J Nutr Biochem ; 133: 109708, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39059479

RESUMEN

Gut flora is considered to modulate lipid transport from the intestine into the bloodstream, and thus may potentially participate in the development of GDM. Although previous studies have shown that the intestinal microbiota influences lipid transport and metabolism in GDM, the precise mechanisms remain elusive. To address this, we used a high-fat diet (HFD)-induced GDM mouse model and conducted 16s rRNA sequencing and fecal metabolomics to assess gut microbial community shifts and associated metabolite changes. Western blot, ELISA, and chromatin immunoprecipitation (ChIP) were utilized to elucidate how gut microbiota affect intestinal lipid transport and the insulin sensitivity of hepatic, adipose, and skeletal muscle tissues. We found that HFD impaired the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) in pregnant mice. 16s rRNA sequencing demonstrated profound compositional changes, especially in the relative abundances of Firmicutes and Bacteroidetes. Metabolomics analysis presented a decline in the concentration of short-chain fatty acids (SCFAs) in the GDM group. Western blot analyses showed an upregulation of HDAC3 and a concurrent reduction in H3K27 acetylation in the intestine. ChIP-qPCR showed that PPAR-γ was inhibited, which in turn activated lipid-transporter CD36. ELISA and insulin signaling pathway detection in insulin-target organs showed high concentrations of circulating fatty acids and triglycerides and insulin resistance in insulin-target organs. Our results suggest that gut microbiota is closely associated with the development of GDM, partly because decreased gut flora-associated SCFAs activate CD36 by suppressing the HDAC3-H3K27ac-PPAR-γ axis to transport excessive fatty acids and triglycerides into blood circulation, thereby dysregulating the insulin sensitivity of insulin target organs.

5.
BMJ Open ; 14(7): e082475, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960456

RESUMEN

OBJECTIVES: To investigate the associations of traffic-related air pollution exposures in early pregnancy with birth outcomes and infant neurocognitive development. DESIGN: Cohort study. SETTING: Eligible women attended six visits in the maternity clinics of two centres, the First Affiliated Hospital of Chongqing Medical University and Chongqing Health Centre for Women and Children. PARTICIPANTS: Women who were between 20 and 40 years of age and were at 11-14 weeks gestation with a singleton pregnancy were eligible for participation. Women were excluded if they had a history of premature delivery before 32 weeks of gestation, maternal milk allergy or aversion or severe lactose intolerance. 1273 pregnant women enrolled in 2015-2016 and 1174 live births were included in this analysis. EXPOSURES: Air pollution concentrations at their home addresses, including particulate matter with diameter ≤2.5 µm (PM2.5) and nitrogen dioxide (NO2), during pre-conception and each trimester period were estimated using land-use regression models. OUTCOME MEASURES: Birth outcomes (ie, birth weight, birth length, preterm birth, low birth weight, large for gestational age and small for gestational age (SGA) status) and neurodevelopment outcomes measured by the Chinese version of Bayley Scales of Infant Development. RESULTS: An association between SGA and per-IQR increases in NO2 was found in the first trimester (OR: 1.57, 95% CI: 1.06 to 2.32) and during the whole pregnancy (OR: 1.33, 99% CI: 1.01 to 1.75). Both PM2.5 and NO2 exposure in the 90 days prior to conception were associated with lower Psychomotor Development Index scores (ß: -6.15, 95% CI: -8.84 to -3.46; ß: -2.83, 95% CI: -4.27 to -1.39, respectively). Increased NO2 exposure was associated with an increased risk of psychomotor development delay during different trimesters of pregnancy. CONCLUSIONS: Increased exposures to NO2 during pregnancy were associated with increased risks of SGA and psychomotor development delay, while increased exposures to both PM2.5 and NO2 pre-conception were associated with adverse psychomotor development outcomes at 12 months of age. TRIAL REGISTRATION NUMBER: ChiCTR-IOR-16007700.


Asunto(s)
Contaminación del Aire , Desarrollo Infantil , Exposición Materna , Material Particulado , Humanos , Femenino , Embarazo , China/epidemiología , Adulto , Recién Nacido , Estudios Prospectivos , Material Particulado/efectos adversos , Material Particulado/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Desarrollo Infantil/efectos de los fármacos , Exposición Materna/efectos adversos , Resultado del Embarazo/epidemiología , Adulto Joven , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Lactante , Peso al Nacer , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Efectos Tardíos de la Exposición Prenatal , Nacimiento Prematuro/epidemiología , Masculino
6.
Cells Dev ; : 203934, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942294

RESUMEN

Trophoblasts play a crucial role in embryo implantation and in interacting with the maternal uterus. The trophoblast lineage develops into a substantial part of the placenta, a temporary extra-embryonic organ, capable of undergoing distinctive epigenetic events during development. The critical role of trophoblast-specific epigenetic signatures in regulating placental development has become known, significantly advancing our understanding of trophoblast identity and lineage development. Scientific efforts are revealing how trophoblast-specific epigenetic signatures mediate stage-specific gene regulatory programming during the development of the trophoblast lineage. These epigenetic signatures have a significant impact on blastocyst formation, placental development, as well as the growth and survival of embryos and fetuses. In evolution, DNA hypomethylation in the trophoblast lineage is conserved, and there is a significant disparity in the control of epigenetic dynamics and the landscape of genomic imprinting. Scientists have used murine and human multipotent trophoblast cells as in vitro models to recapitulate the essential epigenetic processes of placental development. Here, we review the epigenetic signatures of the trophoblast lineage and their biological functions to enhance our understanding of placental evolution, development, and function.

7.
Life Sci ; 350: 122744, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810793

RESUMEN

AIMS: The prevalence of gestational diabetes mellitus (GDM) has spurred investigations into various interconnected factors, among which gut dysbiosis is notably prominent. Although gut dysbiosis is strongly associated with GDM, the specific role of the gut microbiome in the pathogenesis of GDM remains unknown. This study aims to explore the pathogenesis of GDM from gut microbiota. MATERIALS AND METHODS: In our study, we constructed two GDM mice models: one induced by a high-fat diet (HFD) and the other through fecal microbiota transplantation (FMT) from GDM patients. In vitro, we used a co-culture system of RAW264.7 and 3T3-L1 adipocytes. KEY FINDINGS: We induced a GDM-like state in pregnant mice by FMT from GDM patients, which was consistent with the HFD model. A potential mechanism identified involves the diminished abundance of SCFA-producing microbiota, which reduces SCFAs, particularly propionic acid and butyric acid. In vitro, butyric and propionic acids were observed to alleviate LPS-induced TLR4-NF-κB activation, thereby reducing inflammation levels and inhibiting adipose insulin resistance via the PI3K/AKT signaling pathway. This reduction appears to trigger the polarization of adipose tissue macrophages toward M1 and promote insulin resistance in adipose tissue. SIGNIFICANCE: Our study fills this knowledge gap by finding that alterations in gut microbiota have an independent impact on hyperglycemia and insulin resistance in the GDM state. In vivo and in vitro, gut dysbiosis is linked to adipose tissue inflammation and insulin resistance via the bacterial product SCFAs in the GDM state, providing new insights into the pathogenesis of GDM.


Asunto(s)
Tejido Adiposo , Diabetes Gestacional , Disbiosis , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Macrófagos , Animales , Diabetes Gestacional/metabolismo , Diabetes Gestacional/microbiología , Femenino , Disbiosis/metabolismo , Ratones , Embarazo , Macrófagos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Tejido Adiposo/metabolismo , Humanos , Células RAW 264.7 , Resistencia a la Insulina , Trasplante de Microbiota Fecal , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Células 3T3-L1 , Modelos Animales de Enfermedad
8.
Heliyon ; 10(3): e25252, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322906

RESUMEN

The ecto-5'-nucleotidase (CD73)/adenosine signaling pathway has been reported to regulate tumor epithelial-mesenchymal transition (EMT), migration and proliferation. However, little is known about the metabolic mechanisms underlying its role in trophoblast proliferation and migration. In this study, we aimed to investigate the metabolic role of the CD73/adenosine signaling pathway on the proliferation and migration of trophoblast. We found that CD73 levels were upregulated in preeclamptic placentas compared with the placentas of normotensive pregnant women. EMT and migration of HTR-8/SVneo cells were enhanced when treated with a CD73 inhibitor (100 µM) in vitro. Conversely, excessive adenosine (25 or 50 µM) suppressed trophoblast cell EMT, migration and proliferation. RNA-seq, metabolomics and seahorse findings showed that adenosine treatment resulted in increased expression of PDK1, suppression of aerobic respiration, glycolysis and amino acids synthesis, as well as increased utilization of short-chain fatty acids (SCFAs). Furthermore, the 13C-adenosine isotope tracking experiment demonstrated that adenosine served as a carbon source for the tricarboxylic acid (TCA) cycle. Our results reveal the role of adenosine in regulating trophoblast energy metabolism is like a double-edged sword - either inhibiting aerobic respiration or supplementing carbon sources into metabolic flux. CD73/adenosine signaling regulated trophoblast EMT, migration, and proliferation by modulating energy metabolism. This study indicates that CD73/adenosine signaling potentially plays a role in the occurrence of placenta-derived diseases, including preeclampsia.

9.
Biomolecules ; 13(12)2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38136676

RESUMEN

Most current metabolomics studies of oral squamous cell carcinoma (OSCC) are mainly focused on identifying potential biomarkers for early screening and diagnosis, while few studies have investigated the metabolic profiles promoting metastasis. In this study, we aimed to explore the altered metabolic pathways associated with metastasis of OSCC. Here, we identified four OSCC cell models (CAL27, HN6, HSC-3, SAS) that possess different invasive heterogeneity via the transwell invasion assay and divided them into high-invasive (HN6, SAS) and low-invasive (CAL27, HSC-3) cells. Quantitative analysis and stable isotope tracing using [U-13C6] glucose were performed to detect the altered metabolites in high-invasive OSCC cells, low-invasive OSCC cells and normal human oral keratinocytes (HOK). The metabolic changes in the high-invasive and low-invasive cells included elevated glycolysis, increased fatty acid metabolism and an impaired TCA cycle compared with HOK. Moreover, pathway analysis demonstrated significant differences in fatty acid biosynthesis; arachidonic acid (AA) metabolism; and glycine, serine and threonine metabolism between the high-invasive and low-invasive cells. Furthermore, the high-invasive cells displayed a significant increase in the percentages of 13C-glycine, 13C-palmitate, 13C-stearic acid, 13C-oleic acid, 13C-AA and estimated FADS1/2 activities compared with the low-invasive cells. Overall, this exploratory study suggested that the metabolic differences related to the metastatic phenotypes of OSCC cells were concentrated in glycine metabolism, de novo fatty acid synthesis and polyunsaturated fatty acid (PUFA) metabolism, providing a comprehensive understanding of the metabolic alterations and a basis for studying related molecular mechanisms in metastatic OSCC cells.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Glicina , Ácidos Grasos
10.
Brain Sci ; 13(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37891827

RESUMEN

(1) Background: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that threatens the population health of older adults. However, the mechanisms of the altered metabolism involved in AD pathology are poorly understood. The aim of the study was to identify the potential biomarkers of AD and discover the metabolomic changes produced during the progression of the disease. (2) Methods: Gas chromatography-mass spectrometry (GC-MS) was used to measure the concentrations of the serum metabolites in a cohort of subjects with AD (n = 88) and a cognitively normal control (CN) group (n = 85). The patients were classified as very mild (n = 25), mild (n = 27), moderate (n = 25), and severe (n = 11). The serum metabolic profiles were analyzed using multivariate and univariate approaches. Least absolute shrinkage and selection operator (LASSO) logistic regression was applied to identify the potential biomarkers of AD. Biofunctional enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes. (3) Results: Our results revealed considerable separation between the AD and CN groups. Six metabolites were identified as potential biomarkers of AD (AUC > 0.85), and the diagnostic model of three metabolites could predict the risk of AD with high accuracy (AUC = 0.984). The metabolic enrichment analysis revealed that carbohydrate metabolism deficiency and the disturbance of amino acid, fatty acid, and lipid metabolism were involved in AD progression. Especially, the pathway analysis highlighted that l-glutamate participated in four crucial nervous system pathways (including the GABAergic synapse, the glutamatergic synapse, retrograde endocannabinoid signaling, and the synaptic vesicle cycle). (4) Conclusions: Carbohydrate metabolism deficiency and amino acid dysregulation, fatty acid, and lipid metabolism disorders were pivotal events in AD progression. Our study may provide novel insights into the role of metabolic disorders in AD pathogenesis and identify new markers for AD diagnosis.

11.
Clin Nutr ; 42(10): 1875-1888, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625317

RESUMEN

BACKGROUND & AIMS: Exposure to a range of elements, air pollution, and specific dietary components in pregnancy has variously been associated with gestational diabetes mellitus (GDM) risk or infant neurodevelopmental problems. We measured a range of pregnancy exposures in maternal hair and/or infant cord serum and tested their relationship to GDM and infant neurodevelopment. METHODS: A total of 843 pregnant women (GDM = 224, Non-GDM = 619) were selected from the Complex Lipids in Mothers and Babies cohort study. Forty-eight elements in hair and cord serum were quantified using inductively coupled plasma-mass spectrometry analysis. Binary logistic regression was used to estimate the associations between hair element concentrations and GDM risk, while multiple linear regression was performed to analyze the relationship between hair/cord serum elements and air pollutants, diet exposures, and Bayley Scales of infant neurodevelopment at 12 months of age. RESULTS: After adjusting for maternal age, BMI, and primiparity, we observed that fourteen elements in maternal hair were associated with a significantly increased risk of GDM, particularly Ta (OR = 9.49, 95% CI: 6.71, 13.42), Re (OR = 5.21, 95% CI: 3.84, 7.07), and Se (OR = 5.37, 95% CI: 3.48, 8.28). In the adjusted linear regression model, three elements (Rb, Er, and Tm) in maternal hair and infant cord serum were negatively associated with Mental Development Index scores. For dietary exposures, elements were positively associated with noodles (Nb), sweetened beverages (Rb), poultry (Cs), oils and condiments (Ca), and other seafood (Gd). In addition, air pollutants PM2.5 (LUR) and PM10 were negatively associated with Ta and Re in maternal hair. CONCLUSIONS: Our findings highlight the potential influence of maternal element exposure on GDM risk and infant neurodevelopment. We identified links between levels of these elements in both maternal hair and infant cord serum related to air pollutants and dietary factors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Diabetes Gestacional , Embarazo , Lactante , Femenino , Humanos , Diabetes Gestacional/epidemiología , Estudios de Cohortes , Sangre Fetal/química , Contaminación del Aire/efectos adversos , Contaminantes Atmosféricos/análisis , Ingestión de Alimentos
12.
J Assist Reprod Genet ; 40(10): 2473-2483, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37568040

RESUMEN

PURPOSE: The purpose of this study was to investigate alterations in serum metabolites during endometrial transformation and possible associations with recurrent implantation failure (RIF) in hormonal replacement therapy (HRT)-frozen embryo transfer (FET) cycles. METHODS: We performed a prospective study involving 100 patients scheduled for HRT-FET cycles during January 2022 to April 2022. Blood serum samples were collected on the day of progesterone administration (dPA) and on the third day of progesterone administration (d3PA). Gas chromatography-mass spectrometry (GC-MS) analysis was performed to identify and quantify serum metabolites. A nested case-control study including 19 RIF patients and 19 matching controls was conducted to explore the predictive value of serum metabolites for RIF. Partial least squares discriminant analysis (PLS-DA) and receiver operating characteristic (ROC) curve analysis were performed to establish prediction models. MAIN RESULTS: We identified 105 serum metabolites, with 76 of them exhibiting significant alterations during the initial 3 days of endometrial transformation. Metabolites involved in amino acid metabolism and tricarboxylic acid (TCA) cycle showed lower levels during endometrial transformation. In the nested case-control study, the prediction model based on the ratio of serum metabolites between d3PA and dPA showed the highest area under the ROC curve (AUC), accuracy, and R2 and Q2 values. Eight metabolites, including indol-3-propionic acid, beta-alanine, myristoleic acid, malic acid, indole, DL-isocitric acid, proline, and itaconic acid, exhibited high predictive values for RIF. CONCLUSION: This study demonstrates alterations in serum metabolites during endometrial transformation, particularly in amino acid metabolism and TCA cycle. The identified metabolites, especially indol-3-propionic acid and malic acid, show potential as predictive markers for RIF. These findings contribute to a better understanding of the metabolic changes associated with endometrial receptivity and provide insights for the development of personalized approaches to improve implantation outcomes in FET cycles.


Asunto(s)
Progesterona , Suero , Humanos , Femenino , Embarazo , Estudios de Casos y Controles , Estudios Prospectivos , Implantación del Embrión , Transferencia de Embrión/métodos , Metabolómica , Aminoácidos/metabolismo , Endometrio/metabolismo , Índice de Embarazo , Estudios Retrospectivos
13.
Front Microbiol ; 14: 1219763, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649633

RESUMEN

Introduction: Obesity and diabetes are common chronic metabolic disorders which can cause an imbalance of the intestinal flora and gut-liver metabolism. Several studies have shown that probiotics, including Escherichia coli Nissle 1917 (EcN), promote microbial balance and metabolic health. However, there are no studies on how EcN outer membrane vesicles (EcN-OMVs) influence the intestinal microflora and affect the metabolic disorders of obesity and diabetes. Methods: In this study, we evaluated the effects of EcN-OMVs on high-fat diet (HFD)-induced obesity and HFD + streptozotocin (STZ)-induced diabetes. Results: EcN-OMVs could reduce body weight, decrease blood glucose, and increase plasma insulin in obese mice. Similarly, EcN-OMVs treatment could modify the ratio of Firmicutes/Bacteroidetes in the gut, elevate intestinal short-chain fatty acid (SCFA)-producing flora, and influence the SCFA content of the intestine. Furthermore, the intestinal metabolites ornithine and fumaric acid, hepatic ω-6 unsaturated fatty acids, and SCFAs were significantly increased after administering EcN-OMVs. Discussion: Overall, this study showed that EcN-OMVs might act as post-biotic agents that could modulate gut-liver metabolism and ameliorate the pathophysiology of obesity and diabetes.

14.
Nutr Metab (Lond) ; 20(1): 31, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443030

RESUMEN

BACKGROUND: Monochorionic (MC) twins present a higher incidence of unfavorable clinical perinatal outcomes than dichorionic (DC) twins, often in association with placental vascular anastomosis. In this study, we profiled the umbilical cord plasma metabolomes of uncomplicated MC and DC twin pregnancies and related these to several offspring outcomes, previously associated with birthweight. METHODS: Umbilical vein blood samples were collected at birth from 25 pairs of uncomplicated MC twins and 24 pairs of uncomplicated DC twins. The samples were subjected to gas chromatography-mass spectrometry-based metabolomics. 152 metabolites were identified from the cord plasma samples of MC and DC twins. Partial least squares discriminant analysis and pathway analysis were performed to compare within DC/MC twin pairs and between DC and MC twins. A generalized estimating equation (GEE) model was utilized to explore the correlation between metabolic differences and birthweight discordance within and between twin pairs. RESULTS: Our study revealed clear differences between the metabolite profiles of umbilical cord plasma of MC and DC twins. Metabolite profiles in MC within twin pairs and DC within twin pairs were characterized by the differences in 2 - hydroxyglutaramic acid levels and nicotinamide levels, respectively. The metabolic pathways of GSH, tryptophan, and fatty acid metabolism, were significantly downregulated in MC twins compared to DC twins. In addition, the concentration of caffeine and decamethyl-cyclopentasiloxane (D5) was positively correlated with birthweight in MC and DC twins. CONCLUSION: This study demonstrated that the altered metabolites in umbilical plasma made contributions to the different chorionicities between uncomplicated MC twins and DC twins. The chorionicity of twins seems to affect the metabolic cross-talk between co-twin pairs and be related to birthweight discordance of twins.

15.
Reprod Biol Endocrinol ; 21(1): 21, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849898

RESUMEN

BACKGROUND: Increasing evidence supports that the co-treatment with growth hormone (GH) enhances ovarian response and oocyte quality during controlled ovarian stimulation (COS) in patients with diminished ovarian reserve (DOR). The composition of follicular fluid (FF) plays an essential role in oocyte development and mirrors the communication occurring between the oocyte and follicular microenvironment. However, the effect of GH on the FF metabolome remains unclear. METHODS: This prospective observational study recruited DOR patients undergoing in vitro fertilization (IVF) cycles with minimal stimulation protocol for COS. Each patient receiving GH co-treatment was matched to a patient without GH co-treatment by propensity score matching. The FF was collected after isolating oocytes and assayed by gas chromatograph-mass spectrometry (GC-MS) metabolomics. The Pearson correlation was performed to evaluate the relationship between the number of oocytes retrieved and the levels of differential metabolites. The KEGG database was used to map differential metabolites onto various metabolic pathways. RESULTS: One hundred thirty-four FF metabolites were identified by GC-MS metabolomics. Twenty-four metabolites, including glutathione, itaconic acid and S-adenosylmethionin (SAM) showed significant differences between the GH and control groups (p-value < 0.05 and q-value < 0.1). In addition, the number of oocytes retrieved was significantly higher in the GH group compared to the control group (3 vs 2, p = 0.04) and correlated with the levels of five differential metabolites. Among them, the levels of antioxidant metabolite itaconic acid were upregulated by GH administration, while SAM levels were downregulated. CONCLUSIONS: The co-treatment with GH during COS may improve oocyte development by altering FF metabolite profiles in DOR patients. However, given the downregulation of SAM, a regulator of genomic imprinting, the potential risk of imprinting disturbances should not be neglected.


Asunto(s)
Hormona de Crecimiento Humana , Enfermedades del Ovario , Reserva Ovárica , Femenino , Humanos , Hormona del Crecimiento , Líquido Folicular , Hormona de Crecimiento Humana/uso terapéutico , Metaboloma
16.
Med Oncol ; 40(2): 75, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609777

RESUMEN

Metabolomics serves as a useful tool for identifying biomarkers of disease and uncovering pathogenic mechanisms. However, most metabolomic studies use biological fluids such as blood and urine as biospecimens, which could be dramatically influenced by daily activities and dietary variation, resulting in measurement fluctuations. In contrast, hair may serve as a robust source of stable longitudinal metabolite information. Here, we conducted a pilot study to investigate the possibility of using hair as a biospecimen for the metabolomic analysis of cervical cancer. Hair, plasma, urine, and cervical tissue samples from cervical cancer and benign tumor patients were collected. Biospecimens were then tested using a gas chromatography-mass spectrometry-based metabolomic platform. The expressions of enzymatic genes related to metabolic changes were validated using qPCR. Statistical analyses were calculated via the R-console platform. Metabolite profiles in both hair and cervical tissue samples were significantly different between cancer and control groups, while no difference was observed in plasma and urine samples. Further analysis showed that most of the altered metabolites in hair were upregulated, and they had a negative correlation with those in the cervical tissue. Eight common metabolites showed an area under the Receiver Operating Characteristic curve greater than 0.95. These metabolites primarily participated in amino acid metabolism, cofactor synthesis, ferroptosis, and glycolysis. The gene expressions (IDH1, OGDH, GLUD1, ENO1, GSS, and GPX4) associated with the shortlisted metabolic pathways were also upregulated. Our study is the first to reveal metabolomic changes of hair in cervical cancer patients and demonstrates the potential for the hair metabolome to be used for biomarker identification in cervical cancer.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/diagnóstico , Proyectos Piloto , Metabolómica/métodos , Metaboloma , Biomarcadores/metabolismo , Cabello/metabolismo
17.
Cell Prolif ; 56(2): e13358, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36480593

RESUMEN

Pre-eclampsia (PE) is deemed an ischemia-induced metabolic disorder of the placenta due to defective invasion of trophoblasts during placentation; thus, the driving role of metabolism in PE pathogenesis is largely ignored. Since trophoblasts undergo substantial glycolysis, this study aimed to investigate its function and regulatory mechanism by AMPK in PE development. Metabolomics analysis of PE placentas was performed by gas chromatography-mass spectrometry (GC-MS). Trophoblast-specific AMPKα1-deficient mouse placentas were generated to assess morphology. A mouse PE model was established by Reduced Uterine Perfusion Pressure, and placental AMPK was modulated by nanoparticle-delivered A769662. Trophoblast glucose uptake was measured by 2-NBDG and 2-deoxy-d-[3 H] glucose uptake assays. Cellular metabolism was investigated by the Seahorse assay and GC-MS.PE complicated trophoblasts are associated with AMPK hyperactivation due not to energy deficiency. Thereafter, AMPK activation during placentation exacerbated PE manifestations but alleviated cell death in the placenta. AMPK activation in trophoblasts contributed to GLUT3 translocation and subsequent glucose metabolism, which were redirected into gluconeogenesis, resulting in deposition of glycogen and accumulation of phosphoenolpyruvate; the latter enhanced viability but compromised trophoblast invasion. However, ablation of AMPK in the mouse placenta resulted in decreased glycogen deposition and structural malformation. These data reveal a novel homeostasis between invasiveness and viability in trophoblasts, which is mechanistically relevant for switching between the 'go' and 'grow' cellular programs.


Asunto(s)
Preeclampsia , Trofoblastos , Humanos , Ratones , Animales , Embarazo , Femenino , Trofoblastos/metabolismo , Placenta/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Preeclampsia/metabolismo , Homeostasis , Glucosa/metabolismo , Movimiento Celular
18.
Clin Chim Acta ; 538: 189-202, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566958

RESUMEN

INTRODUCTION: Ovarian hyperstimulation syndrome (OHSS) is the most serious iatrogenic complication of ovulation stimulation during assisted reproductive technology. The main objective of this study was to investigate intrafollicular fluid metabolic change profiles of OHSS in non-ovarian etiologic infertility women (CON) and polycystic ovarian syndrome patients (PCOS). METHODS: 87 infertile women were divided into four subgroups: CON-Norm (CON with normal ovarian response), CON-OHSS (CON with OHSS), PCOS-Norm (PCOS with normal ovarian response), and PCOS-OHSS (PCOS with OHSS). The intrafollicular fluid metabolic profiles were analyzed with gas chromatography-mass spectrometry. The multivariable-adjusted conditional logistic regression was applied to assess the association of metabolites with OHSS risk. RESULTS: We identified 17 and 3 metabolites that related to OHSS risk in CON and PCOS, respectively. 13 OHSS risk-related metabolites in CON were unsaturated fatty acids, 8 of which were also the significantly altered metabolites between all PCOS and CON-Norm. CONCLUSION: Our study may shed light on the role of intrafollicular fluid metabolic abnormalities in the pathophysiology of OHSS. The findings suggested that there might be some metabolic heterogeneities underlying the development of OHSS in CON and PCOS women and indicated possible shared etiological factors in the development of PCOS and OHSS.


Asunto(s)
Infertilidad Femenina , Síndrome de Hiperestimulación Ovárica , Síndrome del Ovario Poliquístico , Humanos , Femenino , Síndrome de Hiperestimulación Ovárica/complicaciones , Líquido Folicular/metabolismo , Fertilización In Vitro , Cromatografía de Gases y Espectrometría de Masas , Infertilidad Femenina/etiología , Síndrome del Ovario Poliquístico/metabolismo
19.
Front Nutr ; 10: 1259777, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239842

RESUMEN

Introduction: Monochorionic, diamniotic (MCDA) monozygotic twins share nearly all genetic variation and a common placenta in utero. Despite this, MCDA twins are often discordant for a range of common phenotypes, including early growth and birth weight. As such, MCDA twins represent a unique model to explore variation in early growth attributable primarily to in utero environmental factors. Methods: MCDA twins with a range of within-pair birth weight discordance were sampled from the peri/postnatal epigenetic twin study (PETS, Melbourne; n = 26 pairs), Beijing twin study (BTS, Beijing; n = 25), and the Chongqing longitudinal twin study (LoTiS, Chongqing; n = 22). All PETS participants were of European-Australian ancestry, while all Chinese participants had Han ancestry. The average of the birth weight difference between the larger and smaller co-twins for all twin pairs was determined and metabolomic profiles of amino acids, TCA cycle intermediates, fatty acids, organic acids, and their derivatives generated from cord blood plasma by gas chromatograph mass spectrometry. Within and between co-twin pair analyses were performed to identify metabolites specifically associated with discordance in birth weight. Multivariable regression and pathway enrichment analyses between different regions were performed to evaluate the geographical effects on the metabolism of MCDA twin pairs. Results: PETS twins showed a markedly different metabolic profile at birth compared to the two Chinese samples. Within-pair analysis revealed an association of glutathione, creatinine, and levulinic acid with birth weight discordance. Caffeine, phenylalanine, and several saturated fatty acid levels were uniquely elevated in PETS twins and were associated with maternal BMI and average within pair birth weight, in addition to birth weight discordance. LoTiS twins had higher levels of glutathione, tyrosine, and gamma-linolenic acid relative to PETS and BTS twins, potentially associated with eating habits. Conclusion: This study highlights the potential role of underlying genetic variation (shared by MZ twins), in utero (non-shared by MZ twins) and location-specific (shared by MZ twins) environmental factors, in regulating the cord blood metabolome of uncomplicated MCDA twins. Future research is needed to unravel these complex relationships that may play a key role in phenotypic metabolic alterations of twins independent of genetic diversity.

20.
Front Endocrinol (Lausanne) ; 14: 1280833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260149

RESUMEN

Introduction: Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease associated with elevated bile acids in the blood. Diagnosis typically only occurs after the manifestation of clinical symptoms and the metabolic mechanisms underlying its development remain unclear. The aim of this study was to investigate potential specific metabolites and the underlying metabolic changes occurring during the development of ICP in the maternal plasma and hair metabolomes of women diagnosed with either ICP or having a healthy pregnancy. Methods: A total of 35 Chinese women with ICP and 42 healthy pregnancies were enrolled in our study. Plasma and hair samples, total bile acid levels (TBA), alanine transaminase levels (ALT), aspartate aminotransferase levels (AST), and additional clinical information were collected during the third trimester. Metabolites from maternal plasma and hair segments collected pre-conception and analyzed using gas chromatography-mass spectrometry (GC-MS). Results: Three plasma metabolites (p < 0.05, q < 0.38) and 21 hair metabolites (p < 0.05, q < 0.05) were significantly different between ICP and healthy pregnancies. A combination of the eight most significant hair metabolites in a multivariate receiver operating characteristic curve model showed the best area under the curve (AUC) was 0.885, whereas the highest AUC using metabolites from plasma samples was only 0.74. Metabolic pathway analysis revealed 32 pathways were significantly (p and q values < 0.05) affected in the hair samples of patients with ICP. Pathways associated with glutathione metabolism and ABC transporters were affected. No metabolic pathways were significantly affected in plasma. Discussion: Overall, this study showed that the hair metabolome could be more useful than the plasma metabolome for distinguishing ICP from normal pregnancy.


Asunto(s)
Colestasis Intrahepática , Metaboloma , Complicaciones del Embarazo , Embarazo , Humanos , Femenino , Colestasis Intrahepática/diagnóstico , Cabello
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...