Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol Adv ; 68: 108218, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37481094

RESUMEN

Ex-situ biomethanation is an emerging technology that facilitates the use of surplus renewable electricity and valorizes carbon dioxide (CO2) for biomethane production by hydrogenotrophic methanogens. This review offers an up-to-date overview of the current state of ex-situ biomethanation and thoroughly analyzes key operational parameters affecting hydrogen (H2) gas-liquid mass transfer and biomethanation performance, along with an in-depth discussion of the technical challenges. To the best of our knowledge, this is the first review article to discuss microbial community structure in liquid and biofilm phases and their responses after exposure to H2 starvation during ex-situ biomethanation. In addition, future research in areas such as reactor configuration and optimization of operational parameters for improving the H2 mass transfer rate, inhibiting opportunistic homoacetogens, integration of membrane technology, and use of conductive packing material is recommended to overcome challenges and improve the efficiency of ex-situ biomethanation. Furthermore, this review presents a techno-economic analysis for the future development and facilitation of industrial implementation. The insights presented in this review will offer useful information to identify state-of-the-art research trends and realize the full potential of this emerging technology for CO2 utilization and biomethane production.


Asunto(s)
Reactores Biológicos , Microbiota , Dióxido de Carbono , Metano , Hidrógeno , Biocombustibles , Anaerobiosis
2.
Environ Pollut ; 331(Pt 2): 121930, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37270051

RESUMEN

Benzoic acid (BA), a secondary metabolite released through root exudates, is considered to be the most common inhibitor that leads to plant autotoxicity, even at low concentrations in closed hydroponic systems. In this study, to mitigate BA-driven autotoxicity, the effects of O3 and O3/H2O2 oxidation treatment (O3 concentration: 1, 2, 4, 8 mg L-1, H2O2 concentration: 4, 8 mg L-1) on waste nutrient solution (WNS) were investigated in terms of BA degradation, the rate of germination inhibition (GI), and the rate of root growth inhibition (RI). In the case of O3 treatment, the BA degradation rate improved up to 14.1% as the O3 concentration increased, while alleviation of GI was insignificant (94.6-100%), confirming that a single O3 treatment was unsuitable for mitigating autotoxicity. On the other hand, O3/H2O2 treatment increased BA degradation by up to 24.8%, thereby significantly reducing GI (up to 7.69%) and RI (up to 0.88%). Both the highest BA mineralization rate and phytotoxicity mitigation was observed at BA125 (4-4) (BA mineralization: 16.7%, GI: 12.82%, RI: 11.69%) and BA125 (1-8) (BA mineralization: 17.7%, GI: 7.69%, RI: 0.88%) at each H2O2 concentration. In addition, the operating costs were evaluated by a chemical and electricity cost analysis at the different treatments. As a result, the operating costs of BA125 (4-4) and BA125 (1-8) were calculated to be 0.40 and 0.42 $ L-1 mg-1 of mineralized BA, respectively. After consideration of the mineralization rate, autotoxicity mitigation, and operating cost, BA125 (1-8) was suggested for the optimal treatment condition and our findings would contribute to the alleviation of BA-driven autotoxicity.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Germinación , Peróxido de Hidrógeno/toxicidad , Lactuca , Semillas , Oxidación-Reducción
3.
Sci Total Environ ; 858(Pt 1): 159718, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36302429

RESUMEN

High-pressure anaerobic digestion (HPAD) is a promising technology for producing biogas enriched with high methane content in a single-step process. To enhance HPAD performance, a comprehensive understanding of microbial community dynamics and their interactions is essential. For this, mesophilic batch high-pressurized anaerobic reactors were operated under 3 bars (H3) and 6 bars (H6). The experimental results showed that the effect of high-pressure (up to 6 bar) on acidification was negligible while methanogenesis was significantly delayed. Microbial analysis showed the predominance of Defluviitoga affiliated with the phylum Thermotogae and the reduction of Thiopseudomonas under high-pressure conditions. In addition, the microbial cluster pattern in H3 and H6 was significantly different compared to the CR, indicating a clear shift in microbial community structure. Moreover, Methanobacterium, Methanomicrobiaceae, Alkaliphilus, and Petrimonas were strongly correlated in network analysis, and they could be identified as keystone microbes in the HPAD reactor.


Asunto(s)
Reactores Biológicos , Metano , Anaerobiosis , Reactores Biológicos/microbiología , Biocombustibles , Interacciones Microbianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...