Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 954: 176663, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362565

RESUMEN

As the issue of global climate change becomes increasingly prominent, the grassland ecosystems in Central Asia are facing severe challenges posed by the impacts of climate change. However, the dominant factors, impact pathways, and cumulative and time-lagged effects of climate factors on various grassland indices remain to be explored. This study selected data from 1988 to 2019, including Fractional Vegetation Cover (FVC), Leaf Area Index (LAI), Net Primary Productivity (NPP), and Vegetation Optical Depth (VOD), to characterize grassland coverage, greenness, biomass accumulation, and water content features. Utilizing multiple linear regression, path analysis, and correlation analysis, this study investigated the dominant effects, direct impacts, indirect influences, and cumulative and time-lagged effects of climate factors on various grassland indices from spatial and climatic zone perspectives. The research findings indicate that over time, the grassland FVC and NPP exhibited increasing trends, while the LAI and VOD showed decreasing trends. Grassland indices are primarily influenced by precipitation and soil moisture (SM). The direct impact of SM on grassland indices was higher than precipitation. Vapour pressure deficit (VPD) has a direct negative impact on grassland indices. Grassland indices are subject to positive indirect effects from precipitation via SM and negative indirect effects from VPD via SM. Precipitation and SM mainly exhibited no cumulative and time-lagged effects on the impact of grassland VOD. VPD primarily demonstrated cumulative and time-lagged effects on grassland indices. The research findings offer valuable insights for conserving grassland ecosystems in Central Asia, as well as for shaping socioeconomic strategies and formulating climate policies.

2.
Environ Res ; 262(Pt 2): 119898, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222727

RESUMEN

In the context of global warming, vegetation changes exhibit various patterns, yet previous studies have focused primarily on monotonic changes, often overlooking the complexity and diversity of multiple change processes. Therefore, it is crucial to further explore vegetation dynamics and diverse change trajectories in this region under future climate scenarios to obtain a more comprehensive understanding of local ecosystem evolution. In this study, we established an integrated machine learning prediction framework and a vegetation change trajectory recognition framework to predict the dynamics of vegetation in Central Asia under future climate change scenarios and identify its change trajectories, thus revealing the potential impacts of future climate change on vegetation in the region. The findings suggest that various future climate scenarios will negatively affect most vegetation in Central Asia, with vegetation change intensity increasing with increasing emission trajectories. Analyses of different time scales and trend variations consistently revealed more pronounced downward trends. Vegetation change trajectory analysis revealed that most vegetation has undergone nonlinear and dramatic changes, with negative changes outnumbering positive changes and curve changes outnumbering abrupt changes. Under the highest emission scenario (SSP5-8.5), the abrupt vegetation changes and curve changes are 1.7 times and 1.3 times greater, respectively, than those under the SSP1-2.6 scenario. When transitioning from lower emission pathways (SSP1-2.6, SSP2-4.5) to higher emission pathways (SSP3-7.0, SSP5-8.5), the vegetation change trajectories shift from neutral and negative curve changes to abrupt negative changes. Across climate scenarios, the key climate factors influencing vegetation changes are mostly evapotranspiration and soil moisture, with temperature and relative humidity exerting relatively minor effects. Our study reveals the negative response of vegetation in Central Asia to climate change from the perspective of vegetation dynamics and change trajectories, providing a scientific basis for the development of effective ecological protection and climate adaptation strategies.

3.
J Environ Manage ; 365: 121624, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968888

RESUMEN

In the context of global warming, the occurrence and severity of extreme events like atmospheric drought (AD) and warm spell duration index (WSDI) have increased, causing significant impacts on terrestrial ecosystems in Central Asia's arid regions. Previous research has focused on single extreme events such as AD and WSDI, but the effect of compound hot and dry events (CHWE) on grassland phenology in the arid regions of Central Asia remains unclear. This study utilized structural equation modeling (SEM) and the Pettitt breakpoint test to quantify the direct and indirect responses of grassland phenology (start of season - SOS, length of season - LOS, and end of season - EOS) to AD, WSDI, and CHWE. Furthermore, this research investigated the threshold of grassland phenology response to compound hot and dry events. The research findings indicate a significant increasing trend in AD, WSDI, and CHWE in the arid regions of Central Asia from 1982 to 2022 (0.51 day/year, P < 0.01; 0.25 day/year, P < 0.01; 0.26 day/year, P < 0.01). SOS in the arid regions of Central Asia showed a significant advancement trend, while EOS exhibited a significant advance. LOS demonstrated an increasing trend (-0.23 day/year, P < 0.01; -0.12 day/year, P < 0.01; 0.56 day/year). The temperature primarily governs the variation in SOS. While higher temperatures promote an earlier SOS, they also offset the delaying effect of CHWE on SOS. AD, temperature, and CHWE have negative impacts on EOS, whereas WSDI has a positive effect on EOS. AD exhibits the strongest negative effect on EOS, with an increase in AD leading to an earlier EOS. Temperature and WSDI are positively correlated with LOS, indicating that higher temperatures and increased WSDI contribute to a longer LOS. The threshold values for the response of SOS, EOS, and LOS to CHWE are 16.14, 18.49, and 16.61 days, respectively. When CHWE exceeds these critical thresholds, there are significant changes in the response of SOS, EOS, and LOS to CHWE. These findings deepen our understanding of the mechanisms by which extreme climate events influence grassland phenology dynamics in Central Asia. They can contribute to better protection and management of grassland ecosystems and help in addressing the impacts of global warming and climate change in practice.


Asunto(s)
Sequías , Pradera , Estaciones del Año , Ecosistema , Cambio Climático , Asia , Calentamiento Global
4.
PeerJ ; 12: e17663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035157

RESUMEN

Background: The species composition of and changes in grassland communities are important indices for inferring the number, quality and community succession of grasslands, and accurate monitoring is the foundation for evaluating, protecting, and utilizing grassland resources. Remote sensing technology provides a reliable and powerful approach for measuring regional terrain information, and the identification of grassland species by remote sensing will improve the quality and effectiveness of grassland monitoring. Methods: Ground hyperspectral images of a sericite-Artemisia desert grassland in different seasons were obtained with a Soc710 VP imaging spectrometer. First-order differential processing was used to calculate the characteristic parameters. Analysis of variance was used to extract the main species, namely, Seriphidium transiliense (Poljak), Ceratocarpus arenarius L., Petrosimonia sibirica (Pall), bare land and the spectral characteristic parameters and vegetation indices in different seasons. On this basis, Fisher discriminant analysis was used to divide the samples into a training set and a test set at a ratio of 7:3. The spectral characteristic parameters and vegetation indices were used to identify the three main plants and bare land. Results: The selection of parameters with significant differences (P < 0.05) between the recognition objects effectively distinguished different land features, and the identification parameters also differed due to differences in growth period and species. The overall accuracy of the recognition model established by the vegetation index decreased in the following order: June (98.87%) > September (91.53%) > April (90.37%). The overall accuracy of the recognition model established by the feature parameters decreased in the following order: September (89.77%) > June (88.48%) > April (85.98%). Conclusions: The recognition models based on vegetation indices in different months are superior to those based on feature parameters, with overall accuracies ranging from 1.76% to 9.40% higher. Based on hyperspectral image data, the use of vegetation indices as identification parameters can enable the identification of the main plants in sericite-Artemisia desert grassland, providing a basis for further quantitative classification of the species in community images.


Asunto(s)
Clima Desértico , Pradera , Tecnología de Sensores Remotos/métodos , Imágenes Hiperespectrales/métodos , Artemisia/clasificación , China , Estaciones del Año , Análisis Discriminante
5.
Sci Total Environ ; 933: 173155, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735323

RESUMEN

Climate change has induced substantial impact on the gross primary productivity (GPP) of terrestrial ecosystems by affecting vegetation phenology. Nevertheless, it remains unclear which among the mean rates of grass greening (RG), yellowing (RY), and the length of growing season (LOS) exhibit stronger explanatory power for GPP variations, and how RG and RY affect GPP variations under warming scenarios. Here, we explored the relationship between RG, RY, LOS, and GPP in arid Central Asia (ACA) from 1982 to 2019, elucidating the response mechanisms of RG, RY, and GPP to the mean temperature (TMP), vapor pressure deficit (VPD), precipitation (PRE), and soil moisture (SM). The results showed that the multi-year average length of greening (LG) in ACA was 22.7 days shorter than that of yellowing (LY) and the multi-year average GPP during LG (GPPlg) was 38.28 g C m-2 d -1 more than that of during LY (GPPly). RG and RY were positively correlated with GPPlg and GPPly, although the degree of correlation between RG and GPPlg was higher than that between RY and GPPly. Increases in RG and RY contributed to an increase in GPPlg (55.44 % of annual GPP) and GPPly (35.44 % of annual GPP). The correlation between RG and GPPlg was the strongest (0.49), followed by RY and GPPly (0.33), and LOS and GPP was the weakest (0.21). TMP, VPD, PRE, and SM primarily affected GPP by influencing RG and RY, rather than direct effects. The positive effects of TMP during LG (TMPlg), PRE during LG (PRElg), and SM during LG (SMlg) facilitated increases in RG and GPPlg, and higher VPD during LY (VPDly) and lower PRE during LY (PREly) accelerated increases in RY. Our study elucidated the impact of vegetation growth rate on GPP, thus providing an alternate method of quantifying the relationship between vegetation phenology and GPP.


Asunto(s)
Cambio Climático , Pradera , Estaciones del Año , Poaceae/crecimiento & desarrollo , Asia Central , Monitoreo del Ambiente
6.
Front Plant Sci ; 15: 1340566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601311

RESUMEN

It is crucial to estimate the theoretical carrying capacity of grasslands in Xinjiang to attain a harmonious balance between grassland and livestock, thereby fostering sustainable development in the livestock industry. However, there has been a lack of quantitative assessments that consider long-term, multi-scale grass-livestock balance and its impacts in the region. This study utilized remote sensing and empirical models to assess the theoretical livestock carrying capacity of grasslands. The multi-scale spatiotemporal variations of the theoretical carrying capacity in Xinjiang from 1982 to 2020 were analyzed using the Sen and Mann-Kendall tests, as well as the Hurst index. The study also examined the county-level grass-livestock balance and inter-annual trends. Additionally, the study employed the geographic detector method to explore the influencing factors. The results showed that: (1) The overall theoretical livestock carrying capacity showed an upward trend from 1982 to 2020; The spatial distribution gradually decreased from north to south and from east to west. In seasonal scale from large to small is: growing season > summer > spring > autumn > winter; at the monthly scale, the strongest livestock carrying capacity is in July. The different grassland types from largest to smallest are: meadow > alpine subalpine meadow > plain steppe > desert steppe > alpine subalpine steppe. In the future, the theoretical livestock carrying capacity of grassland will decrease. (2) From 1988 to 2020, the average grass-livestock balance index in Xinjiang was 2.61%, showing an overall increase. At the county level, the number of overloaded counties showed an overall increasing trend, rising from 46 in 1988 to 58 in 2020. (3) Both single and interaction factors of geographic detectors showed that annual precipitation, altitude and soil organic matter were the main drivers of spatiotemporal dynamics of grassland load in Xinjiang. The results of this study can provide scientific guidance and decision-making basis for achieving coordinated and sustainable development of grassland resources and animal husbandry in the region.

7.
Sci Total Environ ; 905: 167067, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717757

RESUMEN

China possesses abundant grassland resources, making it imperative to comprehend the influence of climate change on Chinese grassland ecosystems. Nonetheless, the impact pathways and lag effects of climate factors on various grassland types in this region at multiple temporal scales are still to be investigated in long-term sequences. This study investigated the dynamics of grassland FVC (fractional vegetation cover), temperature, precipitation, and drought from 1982 to 2021 using trend analysis, multiple linear regression, path analysis, and correlation analysis and explored the dominant, direct, indirect, and time-lag effects of climate factors on different grassland types at multiple time scales. Precipitation-grassland correlation pathways dominated the annual-scale grassland FVC. The correlation path of temperature to grassland FVC and the direct path of temperature dominated spring grassland FVC. The correlation path of drought to grassland FVC and the direct path of drought dominated summer grassland FVC. The correlation path of temperature to grassland FVC and the direct path of temperature dominated autumn and winter grassland FVC. The effects of temperature and precipitation on alpine and subalpine meadows, desert grasslands, and alpine and subalpine plains grasslands had a 1-month lag. The response to drought exhibited a 1-month lag in desert grasslands, a 2-month lag in alpine and subalpine meadows, plains grasslands, meadows, and alpine and subalpine plains grasslands, and a 3-month lag in sloped grasslands. This study seeks to provide a scientific reference to reveal the impact of climate change on grasslands and to protect grassland ecosystems.

8.
J Environ Manage ; 344: 118734, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37572401

RESUMEN

Global warming has exacerbated the threat of drought in Central Asia, amplifying its ecological implications within the region's grassland ecosystems. This has become an increasingly prominent issue that requires attention and action. The temporal link between grassland development and drought is asymmetric. However, a quantitative assessment of the temporal effects of multiscale drought on Central Asian grasslands has yet to be explored. Based on correlation analysis and the coefficient of variation method, this study analysed the cumulative and lag effects of multitimescale drought on grassland NPP (net primary productivity) under different climatic zones, altitudes and water availabilities in Central Asia from 1982 to 2018, and discussed the impact of temporal effects on grassland NPP stability. Our results on the cumulative effects of drought on grasslands indicate the 6.72 months preceding NPP measurement was the duration for which, on average, drought was most strongly correlated with NPP. Additionally, we found a mean lagged effect of 5.36 months, meaning that the monthly drought 5.36 months prior to NPP measurement was, on average, most strongly correlated with NPP. The degree to which grassland NPP was affected by cumulative drought at a given level of water availability was inversely proportional to the number of cumulative drought months. Under different water availabilities, the lagged effect of grassland NPP was stronger in dry areas than in wet areas, and the number of lag months tended to decrease and then increase as the water availability increased. The percentage of areas where grassland NPP was dominated by the cumulative and lagging effects of drought was 30.02% and 69.98%, respectively. The stability of grassland NPP was adversely affected by the drought accumulation effect. The findings of this study contribute to a deeper understanding of the long-term effects of drought on grassland ecosystems. Additionally, it will aid in the development of strategies for mitigating and adapting to drought events, thereby minimizing their negative impacts on agriculture, livestock, and ecosystems.


Asunto(s)
Ecosistema , Pradera , Sequías , Cambio Climático , Agua
9.
Front Plant Sci ; 14: 1143863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008478

RESUMEN

In the process of climate warming, drought has increased the vulnerability of ecosystems. Due to the extreme sensitivity of grasslands to drought, grassland drought stress vulnerability assessment has become a current issue to be addressed. First, correlation analysis was used to determine the characteristics of the normalized precipitation evapotranspiration index (SPEI) response of the grassland normalized difference vegetation index (NDVI) to multiscale drought stress (SPEI-1 ~ SPEI-24) in the study area. Then, the response of grassland vegetation to drought stress at different growth periods was modeled using conjugate function analysis. Conditional probabilities were used to explore the probability of NDVI decline to the lower percentile in grasslands under different levels of drought stress (moderate, severe and extreme drought) and to further analyze the differences in drought vulnerability across climate zones and grassland types. Finally, the main influencing factors of drought stress in grassland at different periods were identified. The results of the study showed that the spatial pattern of drought response time of grassland in Xinjiang had obvious seasonality, with an increasing trend from January to March and November to December in the nongrowing season and a decreasing trend from June to October in the growing season. August was the most vulnerable period for grassland drought stress, with the highest probability of grassland loss. When the grasslands experience a certain degree of loss, they develop strategies to mitigate the effects of drought stress, thereby decreasing the probability of falling into the lower percentile. Among them, the highest probability of drought vulnerability was found in semiarid grasslands, as well as in plains grasslands and alpine subalpine grasslands. In addition, the primary drivers of April and August were temperature, whereas for September, the most significant influencing factor was evapotranspiration. The results of the study will not only deepen our understanding of the dynamics of drought stress in grasslands under climate change but also provide a scientific basis for the management of grassland ecosystems in response to drought and the allocation of water in the future.

10.
J Environ Manage ; 328: 116997, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516706

RESUMEN

Ecological security and ecosystem stability in Central Asia depend heavily on the local vegetation. Vegetation dynamics and the response and hysteresis relationships to climate factors and drought on multiple scales over long time series in the region still need to be further explored. Using the net primary productivity (NPP) values as the vegetation change index of interest, in this study, we analyzed vegetation dynamics in Central Asia from 1982 to 2020 and assessed the responses and time lags of vegetation to climate factors and drought. The results showed that NPP gradually decreased from north to south and from east to west. Vegetation was distributed along both sides of the mountains. The temperatures rose from northeast to southwest, while precipitation gradually increased from southwest to northeast. The proportion of dry and wet years was as follows: normal (56.41%) > slightly dry (28.2%) > slightly humid (15.39%). Precipitation and drought conditions were positively correlated with NPP during the growing season, while temperature was negatively correlated with NPP. Increased spring temperature, precipitation, and drought conditions positively affected vegetation, while sustained summer temperature resulted in suppressed vegetation growth. Autumn vegetation was positively affected by temperature and drought, and precipitation was negatively correlated with autumn vegetation. Increasing winter temperatures promoted vegetation growth. The time lag between NPP and temperature gradually increased from northeast to southwest, and the time lag between NPP and precipitation gradually increased from south to north. Spring temperatures had the greatest beneficial impact on forestlands; summer climatic factors and drought had little effect on shrublands; the autumn climate exhibited small differences in its influence of each plant type; and winter temperatures had the greatest positive effect on grasslands. No time lag effect was found between any of the four vegetation types and precipitation. A one-month lag was found between cultivated lands and temperature; a two-month lag was found between forestlands and temperature; and a one-month lag was found between forestlands and drought and between shrublands and drought. The results can provide a scientific foundation for the sustainable development and management of ecosystems.


Asunto(s)
Sequías , Ecosistema , Cambio Climático , Clima , Estaciones del Año , Temperatura , Asia , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...