Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Front Microbiol ; 15: 1406632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091309

RESUMEN

Loop-mediated isothermal amplification (LAMP) is a novel method for nucleic acid detection known for its isothermal properties, high efficiency, sensitivity, and specificity. LAMP employs 4 to 6 primers targeting 6 to 8 regions of the desired sequence, allowing for amplification at temperatures between 60 and 65°C and the production of up to 109 copies within a single hour. The product can be monitored by various methods such as turbidimetry, fluorometry, and colorimetry. However, it faces limitations such as the risk of non-specific amplification, challenges in primer design, unsuitability for short gene sequences, and difficulty in multiplexing. Recent advancements in polymerase and primer design have enhanced the speed and convenience of the LAMP reaction. Additionally, integrating LAMP with technologies like rolling circle amplification (RCA), recombinase polymerase amplification (RPA), and CRISPR-Cas systems has enhanced its efficiency. The combination of LAMP with various biosensors has enabled real-time analysis, broadening its application in point-of-care testing (POCT). Microfluidic technology has further facilitated the automation and miniaturization of LAMP assays, allowing for the simultaneous detection of multiple targets and preventing contamination. This review highlights advancements in LAMP, focusing on primer design, polymerase engineering, and its integration with other technologies. Continuous improvements and integration of LAMP with complementary technologies have significantly enhanced its diagnostic capabilities, making it a robust tool for rapid, sensitive, and specific nucleic acid detection with promising implications for healthcare, agriculture, and environmental monitoring.

3.
Heliyon ; 10(12): e32727, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994078

RESUMEN

Multiple cell death pathways are involved in neuronal death in ischemic stroke (IS). However, the role of different cell death pathways in different cell types has not been elucidated. By analyzing three single-nucleus RNA sequencing (snRNA-seq) data of IS, we first found that a variety of programmed cell death (PCD) -related genes were significantly changed in different cell types. Based on machine learning and virtual gene knockout, we found that ferroptosis related genes, ferritin heavy chain 1 (Fth1) and ferritin light chain (Ftl1), play a key role in IS. Ftl1 and Fth1 can promote microglia activation, as well as the production of inflammatory factors and chemokines. Cell communication analysis showed that activated microglia could enhance chemotactic peripheral leukocyte infiltration, such as macrophages and neutrophils, through Spp1-Cd44 and App-Cd74 signaling, thereby aggravating brain tissue damage. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) showed that P2ry12 and Mef2c were significantly decreased in oxygen-glucose deprivation (OGD) group, while Ftl1, Fth1, Apoe, Ctsb, Cd44 and Cd74 were significantly increased in OGD group. Collectively, our findings suggested targeted therapy against microglia Ftl1 and Fth1 might improve the state of microglia, reduce the infiltration of peripheral immune cells and tissue inflammation, and then improve the ischemic brain injury in mouse.

5.
PLoS Pathog ; 20(6): e1012334, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941356

RESUMEN

Plasmodium vivax serological exposure markers (SEMs) have emerged as promising tools for the actionable surveillance and implementation of targeted interventions to accelerate malaria elimination. To determine the dynamic profiles of SEMs in current and past P. vivax infections, we screened and selected 11 P. vivax proteins from 210 putative proteins using protein arrays, with a set of serum samples obtained from patients with acute P. vivax and documented past P. vivax infections. Then we used a murine protein immune model to initially investigate the humoral and memory B cell response involved in the generation of long-lived antibodies. We show that of the 11 proteins, especially C-terminal 42-kDa region of P. vivax merozoite surface protein 1 (PvMSP1-42) induced longer-lasting long-lived antibodies, as these antibodies were detected in individuals infected with P. vivax in the 1960-1970s who were not re-infected until 2012. In addition, we provide a potential mechanism for the maintenance of long-lived antibodies after the induction of PvMSP1-42. The results indicate that PvMSP1-42 induces more CD73+CD80+ memory B cells (MBCs) compared to P. vivax GPI-anchored micronemal antigen (PvGAMA), allowing IgG anti-PvMSP1-42 antibodies to be maintained for a long time.


Asunto(s)
Anticuerpos Antiprotozoarios , Malaria Vivax , Células B de Memoria , Proteína 1 de Superficie de Merozoito , Plasmodium vivax , Plasmodium vivax/inmunología , Humanos , Malaria Vivax/inmunología , Anticuerpos Antiprotozoarios/inmunología , Animales , Proteína 1 de Superficie de Merozoito/inmunología , Ratones , Células B de Memoria/inmunología , Inmunidad Humoral/inmunología , Biomarcadores/sangre , Femenino , Memoria Inmunológica/inmunología , Linfocitos B/inmunología , Antígenos de Protozoos/inmunología
6.
Sci Rep ; 14(1): 13819, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879636

RESUMEN

Culture-dependent and metagenomic binning techniques were employed to gain an insight into the diversification of gut bacteria in Rhinopithecius bieti, a highly endangered primate endemic to China. Our analyses revealed that Bacillota_A and Bacteroidota were the dominant phyla. These two phyla species are rich in carbohydrate active enzymes, which could provide nutrients and energy for their own or hosts' survival under different circumstances. Among the culturable bacteria, one novel bacterium, designated as WQ 2009T, formed a distinct branch that had a low similarity to the known species in the family Sphingobacteriaceae, based on the phylogenetic analysis of its 16S rRNA gene sequence or phylogenomic analysis. The ANI, dDDH and AAI values between WQ 2009T and its most closely related strains S. kitahiroshimense 10CT, S. pakistanense NCCP-246T and S. faecium DSM 11690T were significantly lower than the accepted cut-off values for microbial species delineation. All results demonstrated that WQ 2009T represent a novel genus, for which names Rhinopithecimicrobium gen. nov. and Rhinopithecimicrobium faecis sp. nov. (Type strain WQ 2009T = CCTCC AA 2021153T = KCTC 82941T) are proposed.


Asunto(s)
Microbioma Gastrointestinal , Metagenómica , Filogenia , ARN Ribosómico 16S , Animales , Microbioma Gastrointestinal/genética , Metagenómica/métodos , ARN Ribosómico 16S/genética , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Bacteroidetes/clasificación
7.
Neural Regen Res ; 19(10): 2290-2298, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488563

RESUMEN

JOURNAL/nrgr/04.03/01300535-202410000-00030/figure1/v/2024-02-06T055622Z/r/image-tiff Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum (L. barbarum) polysaccharide (LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide (LbGP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of LbGP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of LbGP as a protective pre-treatment on days 1-7; intraperitoneal administration of 40 mg/kg N-methyl-N-nitrosourea to induce photoreceptor injury on day 7; and continuation of orally administered LbGP on days 8-14. Treatment with LbGP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. LbGP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, LbGP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38334269

RESUMEN

A novel Gram-positive strain WQ 127069T that was isolated from the soil of Baima Snow Mountain, a habitat of highly endangered Yunnan snub-nosed monkeys (Rhinopithecus bieti), was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolate belongs to the genus Paenibacillus, showing 98.4 and 96.08 % sequence similarity to the type strains Paenibacillus periandrae PM10T and Paenibacillus foliorum LMG 31456T, respectively. The G+C content of the genomic DNA of strain WQ127069T was 45.6 mol%. The predominant isoprenoid quinone was MK-7, and meso-diaminopimelic acid was present in peptidoglycan. The major cellular fatty acids were antiiso-C15 : 0, iso-C15 : 0 and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine. The whole genome average nucleotide identity and digital DNA-DNA hybridization values between strain WQ 127069T and strain PM10T were 93.2 and 52.5 %, respectively. Growth occurred at 5-40 °C (optimally at 20-35 °C), pH 6-8 (optimally at pH7.0) and with 0.5-2 % (w/v) NaCl (optimally at 0.5 %). On the basis of the taxonomic evidence, a novel species, Paenibacillus baimaensis sp. nov., is proposed. The type strain is WQ 127069T (=KCTC 43480T=CCTCC AB 2022381T).


Asunto(s)
Paenibacillus , Presbytini , Animales , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Suelo , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , China , Ecosistema
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 27-32, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38387895

RESUMEN

OBJECTIVE: To investigate the clinical significance of genetic and molecular changes in primary myeloid sarcoma (MS). METHODS: Fourteen patients with primary MS were selected in Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, The First People's Hospital of Lianyungang from September 2010 to December 2021. AML1-ETO fusion, PML-RARα fusion and CBFß breakage were detected by fluorescence in situ hybridization (FISH), and the mutations of NPM1, CEBPA, FLT3, RUNX1, ASXL1, KIT and TP53 genes were detected by new generation sequencing (NGS). RESULTS: Among 14 patients, the MS occurred in bone, breast, epididymis, lung, chest wall, cervix, small intestine, ovary, lymph nodes and central nervous system. The tumor cells expressed MPO (13 cases), CD34 (7 cases), CD43 (8 cases), CD68 (7 cases), CD99 (8 cases) and CD117 (6 cases). Cytogenetic abnormalities were observed in 4 cases, including 3 cases of AML1-ETO fusion and 1 case of CBFß breakage, while no PML-RARα fusion was detected. There were no significant differences in overall survival (OS) and leukemia-free survival (LFS) between patients with and without AML1-ETO fusion/CBFß breakage (both P >0.05). Among the 14 patients, the number of NPM1, CEBPA, FLT3-ITD, RUNX1, ASXL1, KIT and TP53 gene mutations was 5, 3, 5, 3, 2, 2, 1, respectively, of which 7 cases had at least one mutation in FLT3-ITD, RUNX1, ASXL1 and TP53 gene. The OS and LFS of patients with FLT3-ITD, RUNX1, ASXL1 or TP53 mutation were shorter than those without mutations (both P <0.01). CONCLUSION: The genetic and molecular abnormalities of primary MS can be detected by FISH and NGS techniques. FLT3-ITD, RUNX1, ASXL1 or TP53 mutation indicates a worse prognosis, but further clinical studies are needed to confirm it.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Sarcoma Mieloide , Masculino , Femenino , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Nucleofosmina , Relevancia Clínica , Hibridación Fluorescente in Situ , China
10.
Sci Data ; 10(1): 805, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973925

RESUMEN

The yellow peach moth, Conogethes punctiferalis, is a highly polyphagous pest widespread in eastern and southern Asia. It demonstrates a unique ability to adapt to rotten host fruits and displays resistance to pathogenic microorganisms, including fungi. However, the lack of available genomic resources presents a challenge in comprehensively understanding the evolution of its innate immune genes. Here, we report a high-quality chromosome-level reference genome for C. punctiferalis utilizing PacBio HiFi sequencing and Hi-C technology. The genome assembly was 494 Mb in length with a contig N50 of 3.25 Mb. We successfully anchored 1,226 contigs to 31 pseudochromosomes. Our BUSCO analysis further demonstrated a gene coverage completeness of 96.3% in the genome assembly. Approximately 43% repeat sequences and 21,663 protein-coding genes were identified. In addition, we resequenced 110 C. punctiferalis individuals from east China, achieving an average coverage of 18.4 × and identifying 5.8 million high-quality SNPs. This work provides a crucial resource for understanding the evolutionary mechanism of C. punctiferalis' innate immune system and will help in developing new antibacterial drugs.


Asunto(s)
Genoma de los Insectos , Mariposas Nocturnas , Animales , Cromosomas , Genómica , Mariposas Nocturnas/genética , Filogenia , Secuenciación Completa del Genoma
11.
Front Pharmacol ; 14: 1164784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649892

RESUMEN

Enterovirus 71 (EV71) commonly causes symptoms such as hand, foot, and mouth disease (HFMD) in infants and children and may lead to neurological disease and even death in severe cases. Appropriate vaccines for the prevention of HFMD are available in the clinic; however, they present different and serious adverse effects that cannot guarantee compliance and efficacy. The purpose of this study was to analyze the potential mechanism of Bryum billardieri Schwaegr. (BBS) against EV71 and analyze its potential active components. A previous in vitro antiviral assay was used to determine the best extraction method for the active site of BBS against EV71, and the results showed that the antiviral activity of BBS was more pronounced in the fraction that was extracted by aqueous extraction and alcoholic precipitation and then obtained by purification on a silica gel column (dichloromethane:methanol = 0:100). In addition, the therapeutic effects of BBS on EV71-infected mice were further investigated by in vivo pharmacological experiments. BBS reduced the lung index, viral titer, and degree of EV71-induced lung, brain, and skeletal muscle damage. The mechanism of anti-EV71 activity of BBS was also investigated by using ELISA and qRT-PCR, and it was found that BBS exerted its action mainly by regulating the expression of TLR3, TLR4, TNF-α, IL-2, and IFN-γ by modulating the activation of NF-κB and JAK2/STAT1 signaling pathways. Finally, the chemical structures of the active monomers in BBS were determined by using UPLC-MS and NMR techniques. The study revealed that one of the monomers on which BBS exerts its antiviral activity is saponarin. In conclusion, the results of this study suggest that BBS is considered a natural anti-EV71 product with enormous potential, and saponarin would be its non-negligible active monomer.

12.
Exp Ther Med ; 26(2): 404, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37522054

RESUMEN

Uncommon Microascus cirrosus (M. cirrosus) species have been reported to cause an increasing number of subcutaneous and invasive fungal infections worldwide; since the first human infection was reported in 1992, seven cases have been reported in PubMed. The present study reports a novel genotype named M. cirrosus SZ 2021 isolated from a patient undergoing hematopoietic stem cell transplantation, who exhibited extensive drug resistance and suffered a fatal pulmonary infection. This isolated M. cirrosus was cultured and determined by morphological observation, multi-locus sequence typing, matrix-assisted laser desorption and ionization time-of-flight mass spectrometry, and whole genome sequencing by next-generation sequencing. The whole nucleotide sequence (32.61 Mb) has been uploaded in the NCBI database (PRJNA835605). In addition, M. cirrosus SZ 2021 was not sensitive to the commonly used antifungal drugs, including fluconazole, amphotericin B, 5-flucytosine and caspofungin. The current literature on human infections by M. cirrosus was reviewed to closely define the comprehensive clinical characteristics and etiological identification. In brief, the present study identified a new M. cirrosus and summarized the clinical characteristics of fungal pneumonia by M. cirrosus species. Complete laboratory identification methods from morphology to gene sequencing were also established for an improved etiological identification and further investigation into the real prevalence of invasive pneumonia by M. cirrosus.

13.
IET Nanobiotechnol ; 17(3): 269-280, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36786285

RESUMEN

Currently, organic solvents are necessary for the preparation of anionic liposomes for siRNA delivery. The removal of organic solvent is time-consuming and the residual organic solvent is not only a hidden danger, but also affects the stability of anionic liposomes. Glycerol, which is physiologically compatible and does not need to be removed, is used to promote the dispersion of lipids and the formation of anionic liposomes. Additionally, the preparation process is simple and not time-consuming. The results showed that anionic liposomes, which were typically spherical with a particle size of 188.9 nm were successfully prepared with glycerol. And with the help of Ca2+ , siRNA was encapsulated in anionic liposomes. The highest encapsulation efficiency at 2.4 mM Ca2+ reached 91%. And the formation of calcium phosphate could promote the endosomal escape of siRNA effectively. The results from cell viability showed that the anionic liposomes had no obvious cytotoxicity. It was also verified that anionic liposomes could improve the resistance of siRNA against degradation. Additionally, siRNA delivered by anionic liposomes could play an effective role in knockout. Therefore, anionic liposomes prepared with glycerol will be a safe and effective delivery platform for siRNA and even other nucleic acid drugs.


Asunto(s)
Glicerol , Liposomas , ARN Interferente Pequeño , Tamaño de la Partícula , Solventes
14.
Life (Basel) ; 12(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36431052

RESUMEN

Retinitis pigmentosa (RP) is a photoreceptor-degenerating disease with no effective treatment. Trans-corneal electrical stimulation has neuroprotective effects in degenerating retinas, but repeated applications cause corneal injury. To avoid the risk of corneal damage, here we tested whether repetitive trans-sclera electrical stimulation (TsES) protects degenerating retinas in rd10 mice, a model of RP. At postnatal day 20 (P20), the right eyes of rd10 mice were exposed to 30 min of TsES daily or every other day till P25, at the amplitude of 50 or 100 µA, with zero current as the sham. Immunostaining, multi-electrode-array (MEA) recording, and a black-and-white transition box were applied to examine the morphological and functional changes of the treated retina. Functionally, TsES modified the retinal light responses. It also reduced the high spontaneous firing of retinal ganglion cells. TsES at 100 µA but not 50 µA increased the light sensitivities of ganglion cells as well as their signal-to-noise ratios. TsES at 100 µA increased the survival of photoreceptors without improving the visual behavior of rd10 mice. Our data suggest that repetitive TsES improves the retinal function of rd10 mice at the early degenerating stage, therefore, it might be an effective long-term strategy to delay retinal degeneration in RP patients.

15.
BMC Med Genomics ; 15(1): 214, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36221081

RESUMEN

Left ventricular non-compaction cardiomyopathy (LVNC) is one of the most common inherited cardiovascular diseases. The genetic backgrounds of most LVNC patients are not fully understood. We collected clinical data, family histories, and blood samples and performed genetic analysis using next-generation sequencing (NGS) from a Chinese family of 15 subjects. Clinically LVNC affected subjects showed marked cardiac phenotype heterogeneity. We found that these subjects with LVNC carried a missense heterozygous genetic mutation c.905G>A (p.R302Q) in γ2 subunit of AMP-activated protein kinase (PRKAG2) gene through NGS. Individuals without this mutation showed no symptoms or cardiac structural abnormalities related to LVNC. One subject was the victim of sudden cardiac death. To sum up, PRKAG2 mutation c.905G>A (p.R302Q) caused familial LVNC. Our results described a potentially pathogenic mutation associated with LVNC, which may further extend the spectrum of LVNC phenotypes related to PRKAG2 gene mutations.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Cardiomiopatías , Proteínas Quinasas Activadas por AMP/genética , Cardiomiopatías/genética , Muerte Súbita Cardíaca/etiología , Humanos , Mutación , Fenotipo
16.
World J Diabetes ; 13(10): 877-887, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36312002

RESUMEN

BACKGROUND: Progressive pancreatic ß-cell dysfunction is a fundamental part of the pathology of type 2 diabetes mellitus (T2DM). Cellular therapies offer novel opportunities for the treatment of T2DM to improve the function of islet ß-cells. AIM: To evaluate the effectiveness and safety of human umbilical cord-mesenchymal stem cell (hUC-MSC) infusion in T2DM treatment. METHODS: Sixteen patients were enrolled and received 1 × 106 cells/kg per week for 3 wk as intravenous hUC-MSC infusion. The effectiveness was evaluated by assessing fasting blood glucose, C-peptide, normal glycosylated hemoglobin A1c (HbA1c), insulin resistance index (homeostatic model assessment for insulin resistance), and islet ß-cell function (homeostasis model assessment of ß-cell function). The dosage of hypoglycemic agents and safety were evaluated by monitoring the occurrence of any adverse events (AEs). RESULTS: During the entire intervention period, the fasting plasma glucose level was significantly reduced [baseline: 9.3400 (8.3575, 11.7725), day 14 ± 3: 6.5200 (5.2200, 8.6900); P < 0.01]. The HbA1c level was significantly reduced on day 84 ± 3 [baseline: 7.8000 (7.5250, 8.6750), day 84 ± 3: 7.150 (6.600, 7.925); P < 0.01]. The patients' islet ß-cell function was significantly improved on day 28 ± 3 of intervention [baseline: 29.90 (16.43, 37.40), day 28 ± 3: 40.97 (19.27, 56.36); P < 0.01]. The dosage of hypoglycemic agents was reduced in all patients, of whom 6 (50%) had a decrement of more than 50% and 1 (6.25%) discontinued the hypoglycemic agents. Four patients had transient fever, which occurred within 24 h after the second or third infusion. One patient (2.08%) had asymptomatic nocturnal hypoglycemia after infusion on day 28 ± 3. No liver damage or other side effects were reported. CONCLUSION: The results of this study suggest that hUC-MSC infusion can improve glycemia, restore islet ß-cell function, and reduce the dosage of hypoglycemic agents without serious AEs. Thus, hUC-MSC infusion may be a novel option for the treatment of T2DM.

17.
Mitochondrial DNA B Resour ; 7(6): 933-935, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692660

RESUMEN

Messor structor (Latreille, 1798) is a keystone ant species in the genus Messor (Formicidae: Myrmicinae). Here, we reported the complete mitochondrial genome of M. structor. The circular mitogenome of M. structor is 17628 bp including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region. The base composition was AT-biased (84.07%). Phylogenetic analysis suggests that it is closely related to Aphaenogaster famelica. The mitochondrial genome of M. structor will be a good source for understanding molecular evolutionary studies of this species and related ant species.

18.
Biology (Basel) ; 11(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35625501

RESUMEN

Blastocystis is a common human intestinal protozoan parasite. Little is known about its prevalence in echinococcosis. This study tested whether Echinococcus multilocularis infection would increase host susceptibility to Blastocystis. A total of 114 fecal samples (68 hydatid disease patients and 46 healthy people) were collected from Tibetans in the Qinghai province in China. The presence of Blastocystis was identified by sequencing of the small subunit (SSU) rRNA gene. Balb/c mice were co-infected with Blastocystis and E. multilocularis and tested for host susceptibility to Blastocystis. The overall Blastocystis prevalence was 12.3%; 16.2% in the patients and 4.4% in healthy people (p < 0.05). Sequence analysis identified three known Blastocystis genotypes, including ST1, ST2, and ST3, and one unknown genotype. Experimental dual infection significantly reduced mouse survival rate (20%), induced more severe signs, and increased intestinal damages with a higher intestinal colonization level of Blastocystis. The mouse model showed that E. multilocularis infection increases host susceptibility to Blastocystis. Our study shows a significantly higher prevalence of Blastocystis in patients with liver echinococcosis and reveals that non-intestinal E. multilocularis infection increases host susceptibility to the Blastocystis. Our results highlight that E. multilocularis infection is associated with Blastocystis. These findings remind us that more attention should be paid to the gut health of the patients with a helminth infection during clinical patient care.

19.
Bioengineered ; 13(5): 12706-12717, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35603466

RESUMEN

This study explored the regulation of different perfusion methods on ischemia-reperfusion injury in donor kidneys. In this study, renal cortical/medullary tissue specimens were collected from porcine kidneys donors using different perfusion methods at various time points. Hematoxylin and eosin (H&E) staining was used to test the histological differences. Differentially expressed micro-ribonucleic acids (miRNAs) were identified by miRNA transcriptome sequencing. Reverse transcription-polymerase chain reaction (RT-PCR) tests were used to verify the changes in miRNAs in the kidney tissue taken from different perfusion groups. The related signaling pathways and the changes in the cell functions of different perfusion groups were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) /Gene Ontology (GO) bioinformatics analyses. The effects of miRNA overexpression on the metabolism and proliferation of HK2 cells were detected by ATP kit and MTT assay. The H&E staining results showed that there were essentially no differences in the tissue samples among different perfusion groups at and before 12 h compared with a control group. The quantitative PCR results revealed that there was essentially no change in the expression of ssc-miR-451, ssc-miR-1285, and ssc-miR-486 in the cis infusion or joint infusion kidney groups, and their expression was significantly down-regulated over time in the trans-infusion kidney group. The bioinformatics analysis showed that the cellular component, molecular function, and biological processes of the kidney tissue, which had been perfused using three methods, had been consistently affected. The most significant changes after perfusion occurred in the intracellular metabolism signaling pathways. Furthermore, the energy metabolism and proliferation of the HK2 cells were significantly inhibited after the overexpression of miR-451. Specific miRNA markers, such as miR-451, may play a negative regulatory role in cell metabolism following the perfusion of kidney transplants using different methods.


Asunto(s)
Adenosina Trifosfato , MicroARNs , Adenosina Trifosfato/metabolismo , Animales , Proliferación Celular/genética , Riñón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Perfusión , Porcinos
20.
Virus Res ; 312: 198716, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35240224

RESUMEN

Acute influenza infection has been reported to be associated with neurological symptoms such as influenza-associated encephalopathy (IAE). Although the pathophysiology of this condition remain unclear, neuroinflammation and associated alterations in the central nervous system (CNS) are usually induced. Microglia (MGs), CNS-resident macrophages, are generally the first cells to be activated in response to brain infection or damage. We performed reverse transcriptase droplet digital PCR (RT-ddPCR) and luminex assays to investigate virus proliferation and immune reactions in BV2 MGs infected with influenza A(H1N1)pdm09 virus. Furthermore, isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics methods were used to investigate the dynamic change in the protein expression profile in BV2 MGs to gain insight into the CNS response to influenza A (H1N1) pdm09 infection. Our results showed that the influenza A(H1N1)pdm09 virus was replicative and productive in BV2 MG cells, which produced cytokines such as interleukin (IL)-1ß, IL-6, tumour necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. The expression of osteopontin (OPN) in the influenza A (H1N1) pdm09-infected BV2 MGs was upregulated at 16 and 32 h post-infection (hpi) compared to that in the control group, resulting in aggravated brain damage and inflammation. Our study indicates that OPN signalling might provide new insights into the treatment of CNS injury and neurodegenerative diseases in IAE.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Citocinas/genética , Expresión Génica , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Microglía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...