Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Integr Plant Biol ; 66(4): 645-659, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38450982

RESUMEN

ChinaMu is the largest sequence-indexed Mutator (Mu) transposon insertional library in maize (Zea mays). In this study, we made significant improvements to the size and quality of the ChinaMu library. We developed a new Mu-tag isolation method Mu-Tn5-seq (MuT-seq). Compared to the previous method used by ChinaMu, MuT-seq recovered 1/3 more germinal insertions, while requiring only about 1/14 of the sequencing volume and 1/5 of the experimental time. Using MuT-seq, we identified 113,879 germinal insertions from 3,168 Mu-active F1 families. We also assembled a high-quality genome for the Mu-active line Mu-starter, which harbors the initial active MuDR element and was used as the pollen donor for the mutation population. Using the Mu-starter genome, we recovered 33,662 (15.6%) additional germinal insertions in 3,244 (7.4%) genes in the Mu-starter line. The Mu-starter genome also improved the assignment of 117,689 (54.5%) germinal insertions. The newly upgraded ChinaMu dataset currently contains 215,889 high-quality germinal insertions. These insertions cover 32,224 pan-genes in the Mu-starter and B73Ref5 genomes, including 23,006 (80.4%) core genes shared by the two genomes. As a test model, we investigated Mu insertions in the pentatricopeptide repeat (PPR) superfamily, discovering insertions for 92% (449/487) of PPR genes in ChinaMu, demonstrating the usefulness of ChinaMu as a functional genomics resource for maize.


Asunto(s)
Cromosomas , Elementos Transponibles de ADN , Humanos , Elementos Transponibles de ADN/genética , Mutagénesis Insercional/genética , Secuencia de Bases , Mutación , Zea mays/genética
2.
Genes (Basel) ; 13(5)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35627258

RESUMEN

Miscanthus lutarioriparius is a species of bioenergy crop unique to China. It is widely distributed in the south of China with high resistance to drought and salt stress. To date, the molecular mechanism of the adaption to drought stress in M. lutarioriparius is little known. In this study, RNA-seq technology was employed to analyze the transcriptome changes of diploid and tetraploid M. lutarioriparius after drought treatment. It was found that the number of differentially expressed genes in diploid M. lutarioriparius was much higher than tetraploid, whereas the tetraploid M. lutarioriparius may require fewer transcriptional changes. While the transcriptional changes in drought-tolerant tetraploid M. lutarioriparius are less than that of diploid, more known drought-tolerant pathways were significantly enriched than drought-sensitive diploid M. lutarioriparius. In addition, many drought-tolerance-related genes were constitutively and highly expressed in tetraploid under either normal condition or drought stress. These results together demonstrated that drought-tolerant tetraploid M. lutarioriparius, on the one hand, may preadapt to drought by constitutively overexpressing a series of drought-tolerant genes and, on the other hand, may adapt to drought by actively inducing other drought-tolerant-related pathways. Overall, this study could deepen our understanding of the molecular mechanism of drought-tolerance in bioenergy plants.


Asunto(s)
Sequías , Transcriptoma , Diploidia , Poaceae/genética , Estrés Fisiológico/genética , Tetraploidía , Transcriptoma/genética
5.
Nat Plants ; 7(5): 608-618, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33958777

RESUMEN

Miscanthus, a member of the Saccharinae subtribe that includes sorghum and sugarcane, has been widely studied as a feedstock for cellulosic biofuel production. Here, we report the sequencing and assembly of the Miscanthus floridulus genome by the integration of PacBio sequencing and Hi-C mapping, resulting in a chromosome-scale, high-quality reference genome of the genus Miscanthus. Comparisons among Saccharinae genomes suggest that Sorghum split first from the common ancestor of Saccharum and Miscanthus, which subsequently diverged from each other, with two successive whole-genome duplication events occurring independently in the Saccharum genus and one whole-genome duplication occurring in the Miscanthus genus. Fusion of two chromosomes occurred during rediploidization in M. floridulus and no significant subgenome dominance was observed. A survey of cellulose synthases (CesA) in M. floridulus revealed quite high expression of most CesA genes in growing stems, which is in agreement with the high cellulose content of this species. Resequencing and comparisons of 75 Miscanthus accessions suggest that M. lutarioriparius is genetically close to M. sacchariflorus and that M. floridulus is more distantly related to other species and is more genetically diverse. This study provides a valuable genomic resource for molecular breeding and improvement of Miscanthus and Saccharinae crops.


Asunto(s)
Genoma de Planta/genética , Poaceae/genética , Saccharum/genética , Cromosomas de las Plantas/genética , Evolución Molecular , Duplicación de Gen/genética , Genética de Población , Glucosiltransferasas/genética , Filogenia , Poaceae/enzimología , Alineación de Secuencia , Análisis de Secuencia de ADN , Sorghum/genética , Sintenía/genética
6.
Front Chem ; 8: 595143, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33251186

RESUMEN

Lignocellulose content is an important factor affecting the conversion efficiency of biomass energy plants. In this study, 179 Miscanthus accessions in China were used to determine the content of lignocellulose components in stems via acid hydrolysis and high-performance liquid chromatography. Results showed that the average lignocellulose content of wild Miscanthus germplasm resources was 80.27 ± 6.51%, and the average content of cellulose, hemicellulose, lignin, extracts, and total ash was 38.38 ± 3.52, 24.23 ± 4.21, 17.66 ± 1.56, 14.50 ± 5.60, and 2.53 ± 0.59%, respectively. The average lignocellulose content of M. sinensis, M. floridulus, M. nudipes, M. sacchariflorus, M. lutarioriparius, and the hybrids was 77.94 ± 6.06, 75.16 ± 4.98, 75.68 ± 3.02, 83.71 ± 4.78, 81.50 ± 5.23, and 74.72 ± 7.13%, respectively. In all the tested materials, the highest cellulose content was 48.52%, and the lowest was 29.79%. Hemicellulose had the maximum content of 34.23% and a minimum content of 15.71%. The highest lignin content was 23.75%, and the lowest was 13.01%. The lignocellulosic components of different ploidy materials were compared. The content of lignocellulosic components of diploid M. sacchariflorus was higher than that of tetraploid M. sacchariflorus, and the content of lignocellulosic components of diploid M. lutarioriparius was lower than that of tetraploid M. lutarioriparius. Analysis of the relationship between the changes in lignocellulosic components and geographical locations of Miscanthus showed that the holocellulose and hemicellulose content was significantly positive correlated with the latitude of the original growth location. Results indicated that the lignocellulosic components of Miscanthus resources in China are rich in genetic diversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA