Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120817, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593740

RESUMEN

Spartina alterniflora invasion is considered a critical event affecting sediment phosphorus (P) availability and stock. However, P retention and microbial phosphate solubilization in the sediments invaded with or without S. alterniflora have not been fully investigated. In this study, a sequential fractionation method and high-throughput sequencing were used to analyze P transformation and the underlying microbial mechanisms in the sediments of no plant (NP) zone, transition (T) zone, and plant (P) zone. Results showed that except for organic phosphate (OP), total phosphate (TP), inorganic phosphate (IP), and available phosphate (AP) all followed a significant decrease trend from the NP site to the T site, and to the P site. The vertical decrease of TP, IP, and AP was also observed with an increase in soil depth. Among the six IP fractions, Fe-P, Oc-P, and Ca10-P were the predominant forms, while the presence of S. alterniflora resulted in an obvious P depletion except for Ca8-P and Al-P. Although S. alterniflora invasion did not significantly alter the alpha diversity of phosphate-solubilizing bacteria (PSB) harboring phoD gene, several PSB belonging to p_Proteobacteria, p_Planctomycetes, and p_Cyanobacteriota showed close correlations with P speciation and IP fractions. Further correlation analysis revealed that the reduced soil pH, soil TN and soil EC, and the increased soil TOC mediated by the invasion of S. alterniflora also significantly correlated to these PSB. Overall, this study elucidates the linkage between PSB and P speciation and provides new insights into understanding P retention and microbial P transformation in the coastal sediment invaded by S. alterniflora.


Asunto(s)
Fosfatos , Fósforo , Poaceae , Humedales , China , Estuarios , Sedimentos Geológicos/microbiología
2.
Sci Total Environ ; 926: 171922, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522532

RESUMEN

The first-known As-hyperaccumulator Pteris vittata is efficient in As uptake and translocation, which can be used for phytoremediation of As-contaminated soils. However, the underlying mechanisms of As-enhanced plant growth are unknown. We used untargeted metabolomics to investigate the potential metabolites and associated metabolic pathways regulating As-enhanced plant growth in P. vittata. After 60 days of growth in an MS-agar medium containing 15 mg kg-1 As, P. vittata biomass was 33-34 % greater than the no-As control. Similarly, the As contents in P. vittata roots and fronds were 272 and 1300 mg kg-1, considerably greater than the no-As control. Univariate and multivariate analyses based on electrospray ionization indicate that As exposure changed the expression of 1604 and 1248 metabolites in positive and negative modes. By comparing with the no-As control, As exposure significantly changed the expression of 14 metabolites including abscisic acid, d-glucose, raffinose, stachyose, chitobiose, xylitol, gibberellic acids, castasterone, citric acid, riboflavin-5-phosphate, ubiquinone, ubiquinol, UDP-glucose, and GDP-glucose. These metabolites are involved in phytohormone synthesis, energy metabolism, and sugar metabolism and may all potentially contribute to regulating As-enhanced plant growth in P. vittata. Our data provide clues to understanding the metabolic regulations of As-enhanced plant growth in P. vittata, which helps to enhance its phytoremediation efficiency of As-contaminated soils.


Asunto(s)
Arsénico , Pteris , Contaminantes del Suelo , Arsénico/análisis , Pteris/metabolismo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Raíces de Plantas/metabolismo , Suelo , Glucosa/metabolismo
3.
Ecotoxicol Environ Saf ; 272: 116065, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38330872

RESUMEN

Bisphenol A (BPA) and its substitute bisphenol S (BPS) are desirable materials widely used in manufacturing plastic products but can pose carcinogenic risks to humans. A new conductive iron-based metal-organic framework (Fe-HHTP)-modified pencil graphite electrode (PGE) for electrochemically sensing BPA and BPS was prepared and fully characterized by SEM, TEM, FT-IR, XRD, and XPS. Results showed that the optimal conditions for preparing Fe-HHTP/PGE were a pH of 6.5, a Fe-HHTP concentration of 2 mg·mL-1, a deposition potential of 0 V, and a deposition time of 100 s. The Fe-HHTP/PGE prepared under such conditions harbored a significant electrocatalytic activity with a detection limit of 0.8 nM for BPA and 1.7 nM for BPS (S/N = 3). Correspondingly, the electrochemical response current was linearly correlated to BPA and BPS, ranging from 0.01 to 100 µM. Fe-HHTP/PGE also obtained satisfactory recoveries by 93.8-102.1% and 96.0-101.3% for detecting BPA and BPS in plastic food packaging samples. Our work has provided a novel electrochemical tool to simultaneously detect BPA and BPS in food packaging samples and environmental matrixes.


Asunto(s)
Grafito , Estructuras Metalorgánicas , Fenoles , Humanos , Grafito/química , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos de Bencidrilo/química , Electrodos
4.
J Hazard Mater ; 456: 131669, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236108

RESUMEN

The wide distribution of p-hydroxybenzoic acid (PHBA) in the environments has attracted great concerns due to its potential risks to organisms. Bioremediation is considered a green way to remove PHBA from environment. Here, a new PHBA-degrading bacterium Herbaspirillum aquaticum KLS-1was isolated and its PHBA degradation mechanisms were fully evaluated. Results showed that strain KLS-1 could utilize PHBA as the sole carbon source and completely degrade 500 mg/L PHBA within 18 h. The optimal conditions for bacterial growth and PHBA degradation were pH values of 6.0-8.0, temperatures of 30 °C-35 °C, shaking speed of 180 rpm, Mg2+ concentration of 2.0 mM and Fe2+ concentration of 1.0 mM. Draft genome sequencing and functional gene annotations identified three operons (i.e., pobRA, pcaRHGBD and pcaRIJ) and several free genes possibly participating in PHBA degradation. The key genes pobA, ubiA, fadA, ligK and ubiG involved in the regulation of protocatechuate and ubiquinone (UQ) metabolisms were successfully amplified in strain KLS-1 at mRNA level. Our data suggested that PHBA could be degraded by strain KLS-1 via the protocatechuate ortho-/meta-cleavage pathway and UQ biosynthesis pathway. This study has provided a new PHBA-degrading bacterium for potential bioremediation of PHBA pollution.


Asunto(s)
Bacterias , Suelo , Biodegradación Ambiental
6.
Sci Total Environ ; 858(Pt 3): 160158, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379332

RESUMEN

Root surface biofilm (RSB) is the last window for pollutants entering plant roots and thus plays a critical role in the phytoextraction of pollutants. Exogenous arsenic-reducing bacteria (EARB) have been adopted to enhance the phytoextraction of arsenic (As). However, whether EARB would be involved in RSB formation together with indigenous bacteria and the role of EARB involvement in As phytoextraction are still unknown. Herein, two EARB strains and two phytoextractors (wheat and maize) were selected to investigate the involvement of EARB in RSB formation and its role in As phytoextraction. Results showed that EARB successfully participated in RSB formation together with indigenous bacteria, attributing to their strong chemotaxis and biofilm formation abilities induced by root exudates. The involvement of EARB in RSB formation significantly enhanced As accumulation in plant roots, since more arsenite (As(III)) caused by arsenate (As(V)) reduction in RSB was absorbed by roots. Its underlying mechanism was further elucidated. EARB involvement increased phylum Proteobacteria to produce more siderophores in RSB. Siderophores then improved photosynthesis by increasing catalase and peroxidase activities and decreasing the malondialdehyde of plants. These actions further raised the shoot fresh weight to enhance As accumulation in plant roots. Moreover, mesophyll cell in wheat has a stronger As(V) reduction ability than that in maize, resulting in opposite distribution patterns of As(III) and As(V) in wheat and maize shoots. This study provides a new understanding of phytoextraction enhanced by exogenous bacteria and fills the gap in the role of EARB in As phytoextraction from the perspective of the RSB microregion.


Asunto(s)
Arsénico , Bacterias
7.
Sci Total Environ ; 715: 135298, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31859061

RESUMEN

Arsenic (As) hyperaccumulator Pteris vittata is efficient in As uptake, translocation and accumulation, but the impacts of soil As concentrations on As accumulation and distribution in P. vittata are still unclear. The impacts of soil As (7.3, 63 and 228 mg kg-1) on plant growth and As accumulation in P. vittata after 6 months of growth were evaluated. Arsenic concentrations in the roots, midribs and pinna margin of P. vittata fronds of different maturity were determined by inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy coupled with an energy dispersive spectrometer (SEM-EDS). While moderate As level at As63 didn't impact P. vittata growth, higher As at As228 decreased plant biomass by 38%. Under As stress, more As was accumulated in the senescing fronds (47%) and mature fronds (11%) than the young fronds. In senescing fronds, As concentrations in pinna margin were 2.3 times that of the midribs, consistent with As-induced necrotic symptom. Arsenic distribution based on SEM-EDS analysis revealed good correlation between Si and As in the pinnae (r = 0.49). Our data showed that As accumulation in pinna margin caused necrosis and Si may have a potential role in As detoxification in P. vittata.


Asunto(s)
Pteris , Arsénico , Biodegradación Ambiental , Raíces de Plantas , Suelo , Contaminantes del Suelo
8.
Sci Total Environ ; 690: 1178-1189, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31470481

RESUMEN

Microbial arsenic transformation is important in As biogeochemical cycles in the environment. In this study, a new As-resistant bacterial strain Leclercia adecarboxylata As3-1 was isolated and its associated mechanisms in As resistance and detoxification were evaluated based on genome sequencing and gene annotations. After subjecting strain As3-1 to medium containing arsenate (AsV), AsV reduction occurred and an AsV-enhanced bacterial growth was observed. Strain As3-1 lacked arsenite (AsIII) oxidation ability and displayed lower AsIII resistance than AsV, probably due to its higher AsIII accumulation. Polymerase chain reaction and phylogenetic analysis showed that strain As3-1 harbored a typical AsV reductase gene (arsC) on the plasmids. Genome sequencing and gene annotations identified four operons phoUpstBACS, arsHRBC, arsCRDABC and ttrRSBCA, with 8 additional genes outside the operons that might have involved in As resistance and detoxification in strain As3-1. These included 5 arsC genes explaining why strain As3-1 tolerated high AsV concentrations. Besides ArsC, TtrB, TtrC and TtrA proteins could also be involved in AsV reduction and consequent energy acquisition for bacterial growth. Our data provided a new example of diverse As-regulating systems and AsV-enhanced growth without ArrA in bacteria. The information helps to understand the role of As in selecting microbial systems that can transform and utilize As.


Asunto(s)
Arsénico/metabolismo , Enterobacteriaceae/fisiología , Contaminantes Ambientales/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/genética , Enterobacteriaceae/genética , Genómica
9.
Chemosphere ; 218: 1061-1070, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30609485

RESUMEN

Arsenate (AsV) reduction in bacteria is essential to alleviate their arsenic (As) toxicity. We isolated a Bacillus strain PVR-YHB1-1 from the roots of As-hyperaccumulator Pteris vittata. The strain was efficient in reducing AsV to arsenite (AsIII), but the associated mechanisms were unclear. Here, we investigated its As resistance and reduction behaviors and associated genes at genome level. Results showed that the strain tolerated up to 20 mM AsV. When grown in 1 mM AsV, 96% AsV was reduced to AsIII in 48 h, with its AsV reduction ability being positively correlated to bacterial biomass. Two ars operons arsRacr3arsCDA and arsRKacr3arsC for As metabolisms were identified based on draft genome sequencing and gene annotations. Our data suggested that both operons might have attributed to efficient As resistance and AsV reduction in PVR-YHB1-1, providing clues to better understand As transformation in bacteria and their roles in As transformation in the environment.


Asunto(s)
Arseniatos/química , Arsénico/química , Bacillus/metabolismo , Genoma/genética , Arseniatos/análisis
10.
3 Biotech ; 8(7): 313, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30023145

RESUMEN

Phosphate (PO43-) accumulation associated with bacteria contributes to efficient remediation of eutrophic waters and has attracted attention due to its low cost, high removal efficiency and environmental friendliness. In the present study, we isolated six strains from sludge with high concentrations of chemical oxygen demand, total nitrogen and total phosphorus levels. Among them, strain LH4 exhibited the greatest PO43- removal ability. Strain LH4 is typical of Acinetobacter junii based on physiological, biochemical, and molecular analyses and is a PO43--accumulating organism (PAO) based on toluidine blue staining. The strain grew quickly when subjected to aerobic medium after pre-incubation under anaerobic condition, with a maximum OD600 of 1.429 after 8 h and PO43- removal efficiency of 99%. Our data also indicated that this strain preferred utilizing the carbon (C) sources sodium formate and sodium acetate and the nitrogen (N) sources NH4Cl and (NH4)2SO4 over other compounds. To achieve optimal PO43- removal efficiency, a C:N ratio of 5:1, inoculation concentration of 3%, solution pH of 6, incubation temperature of 30 °C, and shaking speed of 100 rpm were recommended for A. junii strain LH4. By incubating this strain with different concentrations of PO43-, we calculated that its relative PO43- removal capacity ranged from 0.67 to 3.84 mg L-1 h-1, ranking in the top three among reported PAOs. Our study provided a new PO43--accumulating bacterial strain that holds promise for remediating eutrophic waters, and its potential for large-scale use warrants further investigation.

11.
Polymers (Basel) ; 10(9)2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30960888

RESUMEN

Cellulose is the most abundant and widely used biopolymer on earth and can be produced by both plants and micro-organisms. Among bacterial cellulose (BC)-producing bacteria, the strains in genus Komagataeibacter have attracted wide attention due to their particular ability in furthering BC production. Our previous study reported a new strain of genus Komagataeibacter from a vinegar factory. To evaluate its capacity for BC production from different carbon sources, the present study subjected the strain to media spiked with 2% acetate, ethanol, fructose, glucose, lactose, mannitol or sucrose. Then the BC productivity, BC characteristics and biochemical transformation pathways of various carbon sources were fully investigated. After 14 days of incubation, strain W1 produced 0.040⁻1.529 g L-1 BC, the highest yield being observed in fructose. Unlike BC yields, the morphology and microfibrils of BCs from different carbon sources were similar, with an average diameter of 35⁻50 nm. X-ray diffraction analysis showed that all membranes produced from various carbon sources had 1⁻3 typical diffraction peaks, and the highest crystallinity (i.e., 90%) was found for BC produced from mannitol. Similarly, several typical spectra bands obtained by Fourier transform infrared spectroscopy were similar for the BCs produced from different carbon sources, as was the Iα fraction. The genome annotation and Kyoto Encyclopedia of Genes and Genomes analysis revealed that the biochemical transformation pathways associated with the utilization of and BC production from fructose, glucose, glycerol, and mannitol were found in strain W1, but this was not the case for other carbon sources. Our data provides suggestions for further investigations of strain W1 to produce BC by using low molecular weight sugars and gives clues to understand how this strain produces BC based on metabolic pathway analysis.

12.
Colloids Surf B Biointerfaces ; 163: 19-28, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29268210

RESUMEN

Recombinant spider silk protein (pNSR32) and gelatin (Gt) were demonstrated to enhance cytocompatibility of electrospun pNSR32/PCL/Gt scaffold. However, its potential pro-inflammatory effects and interactions with tissue and blood are unknown. In this study, the physicochemical properties and in vitro and in vivo biocompatibility of such scaffolds were evaluated. The results showed that the pNSR32/PCL/Gt scaffold possessed larger average fiber diameters, wider fiber diameter distribution and faster degradation rate than that of pNSR32/PCL and PCL scaffolds. The addition of pNSR32 and Gt had little influence on the hemolysis and plasma re-calcification time, but prolonged kinetic clotting time and reduced the platelet adhesion. The Il-6 and Tnf-α mRNA expression levels were up-regulated in macrophages seeded on the PCL and pNSR32/PCL scaffolds. The lowest release of IL-6 and TNF-α appeared in the pNSR32/PCL/Gt scaffold. Histological results revealed that the PCL and pNSR32/PCL scaffolds elicited severe host tissue responses after implantation, while prominent ingrowth of host cells were observed in the pNSR32/PCL and pNSR32/PCL/Gt scaffolds. The comet assay and bone marrow micronucleus test demonstrated that the pNSR32/PCL/Gt scaffold did not increase the frequency of DNA damage or bone marrow micronucleus. In short, this study confirmed that the pNSR32/PCL/Gt scaffold exhibited better blood and tissue compatibility than pNSR32/PCL and PCL scaffolds. No induction of genotoxicity and inflammatory factor releases makes the pNSR32/PCL/Gt scaffold a good candidate for engineering small diameter vascular tissue.


Asunto(s)
Proteínas de Artrópodos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Plaquetas/efectos de los fármacos , Gelatina/farmacología , Proteínas Recombinantes/farmacología , Andamios del Tejido , Animales , Proteínas de Artrópodos/biosíntesis , Vasos Sanguíneos/citología , Técnicas Electroquímicas , Gelatina/química , Expresión Génica , Interleucina-6/genética , Interleucina-6/inmunología , Ratones , Adhesividad Plaquetaria/efectos de los fármacos , Células RAW 264.7 , Ratas Sprague-Dawley , Proteínas Recombinantes/biosíntesis , Seda/química , Seda/farmacología , Arañas/química , Arañas/fisiología , Ingeniería de Tejidos/métodos , Factor de Necrosis Tumoral alfa/inmunología
13.
Environ Sci Technol ; 51(18): 10387-10395, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28834681

RESUMEN

Arsenic (As) is a toxic carcinogen so it is crucial to decrease As accumulation in crops to reduce its risk to human health. Arsenite (AsIII) antiporter ACR3 protein is critical for As metabolism in organisms, but it is lost in flowering plants. Here, a novel ACR3 gene from As-hyperaccumulator Pteris vittata, PvACR3;1, was cloned and expressed in Saccharomyces cerevisiae (yeast), Arabidopsis thaliana (model plant), and Nicotiana tabacum (tobacco). Yeast experiments showed that PvACR3;1 functioned as an AsIII-antiporter to mediate AsIII efflux to an external medium. At 5 µM AsIII, PvACR3;1 transgenic Arabidopsis accumulated 14-29% higher As in the roots and 55-61% lower As in the shoots compared to WT control, showing lower As translocation. Besides, transgenic tobacco under 5 µM AsIII or AsV also showed similar results, indicating that expressing PvACR3;1 gene increased As retention in plant roots. Moreover, observation of PvACR3;1-green fluorescent protein fusions in transgenic Arabidopsis showed that PvACR3;1 protein localized to the vacuolar membrane, indicating that PvACR3;1 mediated AsIII sequestration into vacuoles, consistent with increased root As. In addition, soil experiments showed ∼22% lower As in the shoots of transgenic tobacco than control. Thus, our study provides a potential strategy to limit As accumulation in plant shoots, representing the first report to decrease As translocation by sequestrating AsIII into vacuoles, shedding light on engineering low-As crops to improve food safety.


Asunto(s)
Arsénico/farmacocinética , Pteris , Contaminantes del Suelo/farmacocinética , Antiportadores , Arsenitos , Raíces de Plantas , Brotes de la Planta
14.
Chemosphere ; 186: 599-606, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28813694

RESUMEN

Arsenic (As)-resistant bacteria are abundant in the rhizosphere and tissues of As-hyperaccumulator Pteris vittata. However, little is known about their roles in As transformation and As uptake in P. vittata. In this study, the impacts of P. vittata tissue extracts with or without surface sterilization on As transformation in solutions containing 100 µg L-1 AsIII or AsV were investigated. After 48 h incubation, the sterilized and unsterilized root extracts resulted in 45% and 73% oxidation of AsIII, indicating a role of both rhizobacteria and endobacteria. In contrast, AsV reduction was only found in rhizome and frond extracts at 3.7-24% of AsV. A total of 37 strains were isolated from the tissue extracts, which are classified into 18 species based on morphology and 16S rRNA. Phylogenic analysis showed that ∼44% isolates were Firmicutes and others were Proteobacteria except for one strain belonging to Bacteroidetes. While most endobacteria were Firmicutes, most rhizobacteria were Proteobacteria. All isolated bacteria belonged to AsV reducers except for an As-sensitive strain and one AsIII- oxidizer PVR-YHB6-1. Since As transformation was not observed in solutions after filtrating or boiling, we concluded that both rhizobacteria and endobacteria were involved in As transformation in the rhizosphere and tissues of P. vittata.


Asunto(s)
Arsénico/metabolismo , Firmicutes/aislamiento & purificación , Proteobacteria/aislamiento & purificación , Pteris/microbiología , Rizosfera , Contaminantes del Suelo/metabolismo , Arseniatos/metabolismo , Arsenitos/metabolismo , Biodegradación Ambiental , Biotransformación , Oxidación-Reducción , Filogenia , Pteris/metabolismo , ARN Ribosómico 16S/genética
15.
Environ Pollut ; 227: 569-577, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28501771

RESUMEN

Arsenic (As) in soils is of major environmental concern due to its ubiquity and carcinogenicity. Pteris vittata (Chinese brake fern) is the first known As-hyperaccumulator, which is highly efficient in extracting As from soils and translocating it to the fronds, making it possible to be used for phytoremediation of As-contaminated soils. In addition, P. vittata has served as a model plant to study As metabolisms in plants. Based on the recent advances, we reviewed the mechanisms of efficient As solubilization and transformation in rhizosphere soils of P. vittata and effective As uptake, translocation and detoxification in P. vittata. We also provided future research perspectives to further improve As phytoremediation by P. vittata.


Asunto(s)
Arsénico/química , Pteris/metabolismo , Contaminantes del Suelo/química , Arsénico/análisis , Arsénico/metabolismo , Biodegradación Ambiental , Rizosfera , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo
16.
Front Plant Sci ; 8: 268, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28298917

RESUMEN

Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As) pollution in paddy soils and its efficient plant uptake, As in rice grains presents health risks. Genetic manipulation may offer an effective approach to reduce As accumulation in rice grains. The genetics of As uptake and metabolism have been elucidated and target genes have been identified for genetic engineering to reduce As accumulation in grains. Key processes controlling As in grains include As uptake, arsenite (AsIII) efflux, arsenate (AsV) reduction and AsIII sequestration, and As methylation and volatilization. Recent advances, including characterization of AsV uptake transporter OsPT8, AsV reductase OsHAC1;1 and OsHAC1;2, rice glutaredoxins, and rice ABC transporter OsABCC1, make many possibilities to develop low-arsenic rice.

17.
J Hazard Mater ; 330: 68-75, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28212511

RESUMEN

Phosphorus (P) is one of the most important nutrients for phytoremediation of arsenic (As)-contaminated soils. In this study, we demonstrated that As-hyperaccumulator Pteris vittata was efficient in acquiring P from insoluble phosphate rock (PR). When supplemented with PR as the sole P source in hydroponic systems, P. vittata accumulated 49% and 28% higher P in the roots and fronds than the -P treatment. In contrast, non-hyperaccumulator Pteris ensiformis was unable to solubilize P from PR. To gain insights into PR solubilization by plants, organic acids in plant root exudates were analyzed by HPLC. The results showed that phytic acid was the predominant (>90%) organic acid in P. vittata root exudates whereas only oxalic acid was detected in P. ensiformis. Moreover, P. vittata secreted more phytic acid in -P and PR treatments. Compared to oxalic acid, phytic acid was more effective in solubilizing PR, suggesting that phytic acid was critical for PR utilization. Besides, secretion of phytic acid by P. vittata was not inhibited by arsenate. Our data indicated that phytic acid played an important role in efficient use of insoluble PR by P. vittata, shedding light on using insoluble PR to enhance phytoremediation of As-contaminated soils.


Asunto(s)
Arsénico/metabolismo , Fosfatos/metabolismo , Ácido Fítico , Raíces de Plantas/fisiología , Pteris/fisiología , Ácido Fítico/análisis , Exudados de Plantas/química
18.
J Hazard Mater ; 321: 146-153, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27619960

RESUMEN

Microbially-mediated arsenic (As) transformation in soils affects As speciation and plant uptake. However, little is known about the impacts of As on bacterial communities and their functional genes in the rhizosphere of As-hyperaccumulator Pteris vittata. In this study, arsenite (AsIII) oxidase genes (aroA-like) and arsenate (AsV) reductase genes (arsC) were amplified from three soils, which were amended with 50mgkg-1 As and/or 1.5% phosphate rock (PR) and grew P. vittata for 90 d. The aroA-like genes in the rhizosphere were 50 times more abundant than arsC genes, consistent with the dominance of AsV in soils. According to functional gene alignment, most bacteria belonged to α-, ß- and γ-Proteobacteria. Moreover, aroA-like genes showed a higher biodiversity than arsC genes based on clone library analysis and could be grouped into nine clusters based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Besides, AsV amendment elevated aroA-like gene diversity, but decreased arsC gene diversity. Redundancy analysis indicated that soil pH, available Ca and P, and AsV concentration were key factors driving diverse compositions in aroA-like gene community. This work identified new opportunities to screen for As-oxidizing and/or -reducing bacteria to aid phytoremediation of As-contaminated soils.


Asunto(s)
Arseniato Reductasas/genética , Arsénico/toxicidad , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Oxidorreductasas/genética , Fosfatos/toxicidad , Pteris/microbiología , Contaminantes del Suelo/toxicidad , Arsénico/metabolismo , Biodiversidad , Gammaproteobacteria/efectos de los fármacos , Gammaproteobacteria/enzimología , Genes Bacterianos , Fosfatos/metabolismo , Pteris/metabolismo , Rizosfera , Contaminantes del Suelo/metabolismo
19.
Environ Int ; 92-93: 348-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27131017

RESUMEN

Human corneal epithelial (HCE) cells are continually exposed to dust in the air, which may cause corneal epithelium damage. Both water and organic soluble contaminants in dust may contribute to cytotoxicity in HCE cells, however, the associated toxicity mechanisms are not fully elucidated. In this study, indoor dust from residential houses and commercial offices in Nanjing, China was collected and the effects of organic and water soluble fraction of dust on primary HCE cells were examined. The concentrations of heavy metals in the dust and dust extracts were determined by ICP-MS and PAHs by GC-MS, with office dust having greater concentrations of heavy metals and PAHs than house dust. Based on LC50, organic extract was more toxic than water extract, and office dust was more toxic than house dust. Accordingly, the organic extracts induced more ROS, malondialdehyde, and 8-Hydroxydeoxyguanosine and higher expression of inflammatory mediators (IL-1ß, IL-6, and IL-8), and AhR inducible genes (CYP1A1, and CYP1B1) than water extracts (p<0.05). Extracts of office dust presented greater suppression of superoxide dismutase and catalase activity than those of house dust. In addition, exposure to dust extracts activated NF-κB signal pathway except water extract of house dust. The results suggested that both water and organic soluble fractions of dust caused cytotoxicity, oxidative damage, inflammatory response, and activation of AhR inducible genes, with organic extracts having higher potential to induce adverse effects on primary HCE cells. The results based on primary HCE cells demonstrated the importance of reducing contaminants in indoor dust to reduce their adverse impacts on human eyes.


Asunto(s)
Contaminación del Aire Interior/análisis , Córnea/citología , Polvo/análisis , Células Epiteliales/efectos de los fármacos , Células Cultivadas , China , Citocromo P-450 CYP1A1/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-1beta , Transducción de Señal
20.
Chemosphere ; 149: 366-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26874625

RESUMEN

Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils.


Asunto(s)
Arsénico/toxicidad , Pteris/crecimiento & desarrollo , Contaminantes del Suelo/toxicidad , Arsénico/análisis , Arsenitos , Biodegradación Ambiental , Biomasa , Fosfatos/química , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/química , Pteris/efectos de los fármacos , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...