Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39117325

RESUMEN

Objectives To compare the gender differences in isolated mitral regurgitation (MR) repair. Methods Of 381 adults aged 54.8±12.3 years undergoing mitral valve repair (MVP) for isolated MR from 01/2019-12/2022, the baseline and operative data, and outcomes were compared between 161 women (42.3%) and 220 men (57.7%). Results Women tended to be non-smoker (98.1% vs 45%, P<0.001), and have more cerebrovascular accidents (38.5% vs 24.1%, P=0.004), lower creatinine (70.0±19.5 vs 86.3±19.9 µmol/dL, P<0.001), smaller LVEDD (54.4±6.7 vs 57.8±6.6 mm, P<0.001) and isolated annular dilatation (19.3% vs 9.1%, P=0.010). One female died of stroke at 2 days (0.3%). Another female (0.3%) underwent MV replacement for failed repair. Stroke occurred in 4 (1.0%). Two underwent re-exploration for bleeding (0.5%). Women were more likely to have less 24-hour drainage (290±143 vs 385±196 mL, P<0.001). Over a mean follow-up of 2.1±1.1 years (100% complete), one woman died, one man underwent a reoperation; 28 had moderate MR, and 9 had severe MR. Neither did early and late mortality and reoperation, nor freedom from late moderate/severe MR (71.6% vs 71.4% at 5 years; P=0.992) differ significantly between two genders. Predictors for late moderate/severe MR were anterior leaflet prolapse (hazard ratio [HR] 4.45; 95% confidence interval [CI] 1.18-16.72; P=0.027) and isolated annular dilation (HR 5.47, 95% CI 1.29-23.25; P=0.021). Conclusions Despite significant differences in smoking, cerebrovascular accidents, creatinine, LVEDD, and isolated annular dilatation at baseline, and 24-hour drainage, women and men did not show significant difference in early and late survival, reoperation and freedom from late moderate/severe MR.

2.
J Control Release ; 374: 50-60, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39111599

RESUMEN

Corneal neovascularization (CNV) is a major cause of blindness worldwide. However, the recent drug treatment is limited by repeated administration and low drug bioavailability. In this work, SU6668 (an inhibitor of receptor tyrosine kinases) and indocyanine green (ICG) are loaded onto poly(lactic-co-glycolic acid) (PLGA) nanoparticles, and then coated with anti-VEGFR2 single chain antibody (AbVr2 scFv) genetically engineered cell membrane vesicles. The nanomedicine is delivered via eye drops, and the hyperthermia induced by laser irradiation could block the blood vessels. Meanwhile, the photothermal effect can also cause the degradation of nanomaterials and release chemotherapeutic drugs in the blocked area, thereby continuously inhibit the neovascularization. Furthermore, SU6668 could inhibit the expression of heat shock protein 70 (HSP70), promoting the cell death induced by photothermal effect. In conclusion, the combination of photothermal and chemotherapy drugs provides a novel, effective and safe approach for the treatment of CNV.

3.
Front Pharmacol ; 15: 1370040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070794

RESUMEN

Background: The latest published therapeutic drug monitoring (TDM) guidelines for vancomycin recommend changing trough-based monitoring to area under the concentration-to-time curve (AUC)-based monitoring. This study aimed to evaluate the implementation status and perceptions of vancomycin AUC-based TDM in China and to determine the challenges in performing AUC-based TDM. Methods: A nationwide cross-sectional survey was conducted in China using an online questionnaire. The questionnaire comprised a total of 25 questions with open- and closed-ended answers to collect information about the current implementation of vancomycin TDM and the participants' perceptions of these practices. The questionnaire responses were collected via the Questionnaire Star platform and analyzed. Results: A total of 161 questionnaires were completed by 131 hospitals and were included. Approximately 59.5% (78/131) of the surveyed hospitals conducted vancomycin TDM; however, only 10.7% (14/131) of these hospitals performed AUC-based vancomycin TDM. Of the eligible participants, 58.4% (94/161) had experience with vancomycin TDM, and only 37 participants (37/161, 23.0%) had the ability to estimate the AUC, primarily through Bayesian simulation (33/161, 20.5%). The participants considered the following challenges to implementing AUC-based monitoring: (1) the high cost of AUC-based monitoring; (2) inadequate knowledge among pharmacists and/or physicians; (3) the complexity of AUC calculations; (4) difficulty obtaining AUC software; and (5) unclear benefit of AUC-based monitoring. Conclusion: The majority of surveyed hospitals have not yet implemented AUC-based vancomycin TDM. Multiple challenges should be addressed before wide implementation of AUC-based monitoring, and guidance for trough-based monitoring is still needed.

4.
Infect Drug Resist ; 17: 2823-2832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005857

RESUMEN

Introduction: Recent studies suggested the potential benefits of extended infusion times to optimize the treatment efficacy of ceftazidime/avibactam, which indicated that the current pharmacokinetic/pharmacodynamic (PK/PD) target may not be sufficient, especially for severe infections. The purpose of this study is to assess the adequacy of dosing strategies and infusion durations of ceftazidime/avibactam when applying higher PK/PD targets. Methods: This study utilized published PK parameters to conduct Monte Carlo simulations. Different dosages including the recommended regimen based on renal function were simulated and evaluated by the probability of target attainment (PTA) and cumulative fraction of response (CFR). Different PK/PD targets were set for ceftazidime and avibactam. MIC distributions from various sources were used to calculate the CFR. Results: Multiple PK/PD targets have been set in this study, All recommended dosage could easily achieve the target of 50%fT ≥ MIC (ceftazidime) and 50%fT ≥ CT=1.0 mg/L (avibactam). However, for severe infection patients with normal renal function and augmented renal clearance at the recommended dosage (2000 mg/500 mg, every 8 hours), the infusion duration needs to be extended to 3 hours and 4 hours to achieve the targets of 100%fT ≥ MIC and 100%fT ≥ CT=1.0 mg/L. Only continuous infusion at higher dosages achieved 100%fT ≥ 4×MIC and 100%fT ≥ CT=4.0 mg/L targets to all currently recommended regimens. According to the varying MIC distributions, higher concentrations are needed for Pseudomonas aeruginosa, with the attainment rates vary across different regions. Conclusion: The current recommended dosing regimen of ceftazidime/avibactam is insufficient for severe infection patients, and continuous infusion is suggested.

5.
Sci Total Environ ; 948: 174836, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39029761

RESUMEN

The United Nations Sustainable Development Goals call for innovative proposals to ensure access to clean water and sanitation. While significant strides have been made in enhancing drinking water purification technologies, the role of drinking water distribution systems (DWDS) in maintaining water quality safety has increasingly become a focal point of concern. The presence of scale within DWDS can impede the secure and efficient functioning of the drinking water supply system, posing risks to the safety of drinking water quality. Previous research has identified that the primary constituents of scale in DWDS are insoluble minerals, such as calcium and magnesium carbonate. Elevated levels of hardness and alkalinity in the water can exacerbate scale formation. To address the scaling issue, softening technologies like induced crystallization, nanofiltration/reverse osmosis, and ion exchange are currently in widespread use. These methods effectively mitigate the scaling in DWDS by reducing the water's hardness and alkalinity. However, the application of softening technologies not only alters the hardness and alkalinity but also induces changes in the fundamental characteristics of water quality, leading to transition effects within the DWDS. This article reviews the impact of various softening technologies on the intrinsic properties of water quality and highlights the merits of electrochemical characteristic indicators in the assessment of water quality stability. Additionally, the paper delves into the factors that influence the transition effects in DWDS. It concludes with a forward-looking proposal to leverage artificial intelligence, specifically machine learning and neural networks, to develop an evaluation and predictive framework for the stability of drinking water quality and the transition effects observed in DWDS. This approach aims to provide a more accurate and proactive method for managing and predicting the impacts of water treatment processes on distribution system integrity and water quality over time.


Asunto(s)
Agua Potable , Purificación del Agua , Calidad del Agua , Abastecimiento de Agua , Agua Potable/química , Purificación del Agua/métodos
6.
Anal Chem ; 96(28): 11603-11610, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953495

RESUMEN

Long noncoding RNAs (lncRNAs) act as the dynamic regulatory molecules that control the expression of genes and affect numerous biological processes, and their dysregulation is associated with tumor progression. Herein, we develop a fluorescent light-up aptasensor to simultaneously measure multiple lncRNAs in living cells and breast tissue samples based on the DNAzyme-mediated cleavage reaction and transcription-driven synthesis of light-up aptamers. When target lncRNAs are present, they can be recognized by template probes to form the active DNAzyme structures, initiating the T4 PNK-catalyzed dephosphorylation-triggered extension reaction to generate double-strand DNAs with the T7 promoter sequences. The corresponding T7 promoters can initiate the transcription amplification catalyzed by the T7 RNA polymerase to generate abundant Broccoli aptamers and malachite green aptamers, which can bind DFHBI-1T and MG to generate strong fluorescence signals. Taking advantage of the good selectivity of DNAzyme-mediated cleavage of lncRNAs, high amplification efficiency of T7 transcription-driven amplification reaction, and bright fluorescence of the RNA aptamer-fluorophore complex, this method exhibits high sensitivity with a detection limit of 21.4 aM for lncRNA HOTAIR and 18.47 aM for lncRNA MALAT1, and it can accurately measure multiple lncRNAs in both tumor cell lines and breast tissue samples, providing a powerful paradigm for biomedical research and early clinic diagnostics.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN Catalítico , Colorantes Fluorescentes , ARN Largo no Codificante , ADN Catalítico/química , ADN Catalítico/metabolismo , ARN Largo no Codificante/análisis , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Humanos , Aptámeros de Nucleótidos/química , Colorantes Fluorescentes/química , Límite de Detección , Fluorescencia
7.
Ecol Evol ; 14(7): e70013, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39011133

RESUMEN

Amaranthaceae s.l. is a widely distributed family consisting of over 170 genera and 2000 species. Previous molecular phylogenetic studies have shown that Amaranthaceae s.s. and traditional Chenopodiaceae form a monophyletic group (Amaranthaceae s.l.), however, the relationships within this evolutionary branch have yet to be fully resolved. In this study, we assembled the complete plastomes and full-length ITS of 21 Amaranthaceae s.l. individuals and compared them with 38 species of Amaranthaceae s.l. Through plastome structure and sequence alignment analysis, we identified a reverse complementary region approximately 5200 bp long in the genera Atriplex and Chenopodium. Adaptive evolution analysis revealed significant positive selection in eight genes, which likely played a driving role in the evolution of Amaranthaceae s.l., as demonstrated by partitioned evolutionary analysis. Furthermore, we found that about two-thirds of the examined species lack the ycf15 gene, potentially associated with natural selection pressures from their adapted habitats. The phylogenetic tree indicated that some genera (Chenopodium, Halogeton, and Subtr. Salsolinae) are paraphyletic lineages. Our results strongly support the clustering of Amaranthaceae s.l. with monophyletic traditional Chenopodiaceae (Clades I and II) and Amaranthaceae s.s. After a comprehensive analysis, we determined that cytonuclear conflict, gene selection by adapted habitats, and incomplete lineage sorting (ILS) events were the primary reasons for the inconsistent phylogeny of Amaranthaceae s.l. During the last glacial period, certain species within Amaranthaceae s.l. underwent adaptations to different environments and began to differentiate rapidly. Since then, these species may have experienced morphological and genetic changes distinct from those of other genera due to intense selection pressure.

8.
J Colloid Interface Sci ; 675: 326-335, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38972120

RESUMEN

Water splitting is a promising technique for clean hydrogen production. To improve the sluggish hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), the development of efficient bifunctional electrocatalysts for both HER and OER is urgent to approach the scale-up applications of water splitting. Nowadays transition metal oxides (TMOs) are considered as the promising electrocatalysts due to their low cost, structural flexibility and stability, however, their electrocatalytic activities are eager to be improved. Here, we synthesized waxberry-like hydrophilic Co-doped ZnFe2O4 electrocatalysts as bifunctional electrocatalysts for water splitting. Due to the enhanced active sites by electronic structure tuning and modified super-hydrophilic characteristics, the spinel ZFO-Co0.5 electrocatalyst exhibits excellent catalytic activities for both OER and HER. It exhibits a remarkable low OER overpotential of 220 mV at a current density of 10 mA cm-2 and a Tafel slope of 28.2 mV dec-1. Meanwhile, it achieves a low overpotential of 73 mV at a current density of 10 mA cm-2 with the Tafel slope of 87 mV dec-1 for HER. In addition, for water electrolysis device, the electrocatalytic performance of ZFO-Co0.5||ZFO-Co0.5 surpasses that of commercial IrO2||Pt/C. Our work reveals that the hydrophilic morphology regulation combined with metallic doping strategy is a facile and effective approach to synthesize spinel TMOs as excellent bifunctional electrocatalyst for water splitting.

9.
Lab Chip ; 24(14): 3422-3433, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38860416

RESUMEN

Thrombosis, characterized by blood clot formation within vessels, poses a significant medical challenge. Despite extensive research, the development of effective thrombosis therapies is hindered by substantial costs, lengthy development times, and high failure rates in medication commercialization. Conventional pre-clinical models often oversimplify cardiovascular disease, leading to a disparity between experimental results and human physiological responses. In response, we have engineered a photothrombosis-on-a-chip system. This microfluidic model integrates human endothelium, human whole blood, and blood flow dynamics and employs the photothrombotic method. It enables precise, site-specific thrombus induction through controlled laser irradiation, effectively mimicking both normal and thrombotic physiological conditions on a single chip. Additionally, the system allows for the fine-tuning of thrombus occlusion levels via laser parameter adjustments, offering a flexible thrombus model with varying degrees of obstruction. Additionally, the formation and progression of thrombosis noted on the chip closely resemble the thrombotic conditions observed in mice in previous studies. In the experiments, we perfused recalcified whole blood with Rose Bengal into an endothelialized microchannel and initiated photothrombosis using green laser irradiation. Various imaging methods verified the model's ability to precisely control thrombus formation and occlusion levels. The effectiveness of clinical drugs, including heparin and rt-PA, was assessed, confirming the chip's potential in drug screening applications. In summary, the photothrombosis-on-a-chip system significantly advances human thrombosis modeling. Its precise control over thrombus formation, flexibility in the thrombus severity levels, and capability to simulate dual physiological states on a single platform make it an invaluable tool for targeted drug testing, furthering the development of organ-on-a-chip drug screening techniques.


Asunto(s)
Dispositivos Laboratorio en un Chip , Trombosis , Humanos , Rayos Láser , Técnicas Analíticas Microfluídicas/instrumentación , Animales , Rosa Bengala
10.
Microbiol Res ; 285: 127774, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833829

RESUMEN

Extended-spectrumß-lactam producing Escherichia coli (ESBL-EC) readily colonizes live poultry and serves as a major source of contamination in retail chicken meat, posing significant threats to public health. This study aims to investigate the impact of inappropriate antibiotic use on the dissemination and exacerbation of antibiotic resistance in ESBL-EC and explore the underlying molecular mechanisms. Through experimental analysis, we propose a hypothesis that inappropriate antibiotic use may exacerbate resistance by affecting vesicle formation and protein secretion. Experimental results demonstrate that under the influence of amoxicillin, the concentration of proteins secreted in outer membrane vehicles (OMVs) by ESBL-EC significantly increases, along with a significant upregulation in the expression of the CTX-M-55-type Extended-spectrum beta-lactamase (CTX-M-55). Proteomic analysis and differential gene knockout experiments identified the key protein YdcZ, associated with OMVs formation and protein transportation in ESBL-EC under amoxicillin treatment. Further investigations reveal direct interactions between YdcZ and other proteins (YdiH and BssR). Upon ydcz gene knockout, a significant decrease in protein concentration within OMVs is observed, accompanied by a noticeable reduction in protection against sensitive bacteria. These findings suggest a critical role of YdcZ in regulating the process of protein transportation to OMVs in ESBL-EC under the influence of amoxicillin. In summary, our research uncovers the significant role of inappropriate antibiotic use in promoting the secretion of OMVs by ESBL-EC, aiding the survival of antibiotic-sensitive bacteria in the vicinity of infection sites. These findings provide new insights into the mechanisms underlying antibiotic-induced bacterial resistance dissemination and offer novel avenues for exploring prevention and control strategies against bacterial resistance propagation.


Asunto(s)
Amoxicilina , Antibacterianos , Proteínas de Escherichia coli , Escherichia coli , Transporte de Proteínas , beta-Lactamasas , Antibacterianos/farmacología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamasas/genética , Amoxicilina/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Proteómica , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Pollos/microbiología , Farmacorresistencia Bacteriana , Membrana Externa Bacteriana/efectos de los fármacos , Membrana Externa Bacteriana/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico
11.
Gerontologist ; 64(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38943547

RESUMEN

BACKGROUND AND OBJECTIVES: This study examined the psychometric properties and measurement invariance of the 10-item Awareness of Age-Related Change Short Form (AARC-SF) questionnaire in a Chinese-speaking sample of older adults in Taiwan. RESEARCH DESIGN AND METHODS: Data from 292 participants (Mage = 77.64 years) in the Healthy Aging Longitudinal Study in Taiwan cohort were used for Study 1, whereas data from young-old adult samples in Germany were used for Study 2. RESULTS: Study 1 showed that the AARC-SF had satisfactory reliability and validity for assessing adults' AARC in Taiwan. Analyses confirmed the 2-factor structure of AARC-gains and AARC-losses. Study 2 demonstrated strong measurement invariance across men and women, whereas direct comparisons of the item scores between young-old adults and old-old adults need to be made with caution. Noninvariance of loadings indicated that certain items were more closely linked to AARC-gains and AARC-losses in Taiwan than in Germany. Noninvariance of intercepts suggested potential biases in comparing item scores between Taiwanese and German older adults. DISCUSSION AND IMPLICATIONS: The AARC-SF emerged as a reliable and valid instrument for capturing positive and negative subjective aging experiences among Taiwanese older adults. However, it is noteworthy that some items on the AARC-SF may solicit different responses from individuals of different ages and different countries of origin, requiring caution with age group and cross-cultural comparisons.


Asunto(s)
Envejecimiento , Psicometría , Humanos , Taiwán , Masculino , Femenino , Anciano , Alemania , Reproducibilidad de los Resultados , Encuestas y Cuestionarios/normas , Estudios Longitudinales , Envejecimiento/psicología , Concienciación , Anciano de 80 o más Años
12.
Anal Chem ; 96(19): 7738-7746, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38690966

RESUMEN

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Asunto(s)
Neoplasias de la Mama , Transferencia Resonante de Energía de Fluorescencia , Puntos Cuánticos , ARN , Telomerasa , Humanos , Telomerasa/metabolismo , Telomerasa/análisis , Puntos Cuánticos/química , ARN/metabolismo , ARN/análisis , Femenino , Carbocianinas/química , Técnicas Biosensibles/métodos
13.
Phys Chem Chem Phys ; 26(23): 16664-16673, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38808589

RESUMEN

For the conversion of fructose/methylglucoside (MG) into both methyl formate (MF) and methyl levulinate (MLev), the C-source of formate [HCOO]- remains unclear at the molecular level. Herein, reaction mechanisms catalyzed by [CH3OH2]+ in a methanol solution were theoretically investigated at the PBE0/6-311++G(d,p) level. For the conversion of fructose into MF and MLev, the formate [HCOO]- comes from the C1-atom of fructose, in which the rate-determining step lies in the reaction of 5-hydroxymethylfurfural (HMF) with CH3OH to yield MF and MLev. The reaction of fructose with CH3OH kinetically tends to generate HMF intermediates rather than yield (MF + MLev). When MG is dissolved in a methanol solution, its O2, O3, and O4 atoms are closer to the first layer of the solvent than O1, O5, and O6 atoms. For the dehydration of MG with methanol into MF and MLev, the formate [HCOO]- stems from the dominant C1- and secondary C3-atoms of MG. Kinetically, MG is ready to yield (MF + MLev), whereas fructose can induce the reaction to remain at the HMF intermediate, inhibiting the further conversion of HMF with CH3OH into MF and MLev. If MG isomerizes into fructose, the reaction will be more preferable for yielding HMF rather than (MF + MLev).

14.
Int J Med Sci ; 21(6): 1117-1128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774761

RESUMEN

In this study, we developed a microfluidic device that is able to monitor cell biology under continuous PM2.5 treatment. The effects of PM2.5 on human alveolar basal epithelial cells, A549 cells, and uncovered several significant findings were investigated. The results showed that PM2.5 exposure did not lead to a notable decrease in cell viability, indicating that PM2.5 did not cause cellular injury or death. However, the study found that PM2.5 exposure increased the invasion and migration abilities of A549 cells, suggesting that PM2.5 might promote cell invasiveness. Results of RNA sequencing revealed 423 genes that displayed significant differential expression in response to PM2.5 exposure, with a particular focus on pathways associated with the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Real-time detection demonstrated an increase in ROS production in A549 cells after exposure to PM2.5. JC1 assay, which indicated a loss of mitochondrial membrane potential (ΔΨm) in A549 cells exposed to PM2.5. The disruption of mitochondrial membrane potential further supports the detrimental effects of PM2.5 on A549 cells. These findings highlight several adverse effects of PM2.5 on A549 cells, including enhanced invasion and migration capabilities, altered gene expression related to ROS pathways, increased ROS production and disruption of mitochondrial membrane potential. These findings contribute to our understanding of the potential mechanisms through which PM2.5 can impact cellular function and health.


Asunto(s)
Movimiento Celular , Supervivencia Celular , Neoplasias Pulmonares , Potencial de la Membrana Mitocondrial , Material Particulado , Especies Reactivas de Oxígeno , Humanos , Material Particulado/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Células A549 , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Movimiento Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Invasividad Neoplásica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Microfluídica/métodos
15.
Phys Chem Chem Phys ; 26(20): 14613-14623, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739028

RESUMEN

A Ru-containing complex shows good catalytic performance toward the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) with the assistance of organic base ligands (OBLs) and CO2. Herein, we report the competitive mechanisms for the hydrogenation of LA to GVL, 4-oxopentanal (OT), and 2-methyltetrahydro-2,5-furandiol (MFD) with HCOOH or H2 as the H source catalyzed by RuCl3 in aqueous solution at the M06/def2-TZVP, 6-311++G(d,p) theoretical level. Kinetically, the hydrodehydration of LA to GVL is predominant, with OT and MFD as side products. With HCOOH as the H source, initially, the OBL (triethylamine, pyridine, or triphenylphosphine) is responsible for capturing H+ from HCOOH, leading to HCOO- and [HL]+. Next, the Ru3+ site is in charge of sieving H- from HCOO-, yielding [RuH]2+ hydride and CO2. Alternatively, with H2 as the H source, the OBL stimulates the heterolysis of H-H bond with the aid of Ru3+ active species, producing [RuH]2+ and [HL]+. Toward the [RuH]2+ formation, H2 as the H source exhibits higher activity than HCOOH as the H source in the presence of an OBL. Thereafter, H- in [RuH]2+ gets transferred to the unsaturated C site of ketone carbonyl in LA. Afterwards, the Ru3+ active species is capable of cleaving the C-OH bond in 4-hydroxyvaleric acid, yielding [RuOH]2+ hydroxide and GVL. Subsequently, CO2 promotes Ru-OH bond cleavage in [RuOH]2+, forming HCO3- and regenerating the Ru3+-active species owing to its Lewis acidity. Lastly, between the resultant HCO3- and [HL]+, a neutralization reaction occurs, generating H2O, CO2, and OBLs. Thus, the present study provides insights into the promotive roles of additives such as CO2 and OBLs in Ru-catalyzed hydrogenation.

16.
J Nanobiotechnology ; 22(1): 290, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802884

RESUMEN

Corneal neovascularization (CNV) is one of the common blinding factors worldwide, leading to reduced vision or even blindness. However, current treatments such as surgical intervention and anti-VEGF agent therapy still have some shortcomings or evoke some adverse effects. Recently, SU6668, an inhibitor targeting angiogenic tyrosine kinases, has demonstrated growth inhibition of neovascularization. But the hydrophobicity and low ocular bioavailability limit its application in cornea. Hereby, we proposed the preparation of SU6668 pure nanoparticles (NanoSU6668; size ~135 nm) using a super-stable pure-nanomedicine formulation technology (SPFT), which possessed uniform particle size and excellent aqueous dispersion at 1 mg/mL. Furthermore, mesenchymal stem cell membrane vesicle (MSCm) was coated on the surface of NanoSU6668, and then conjugated with TAT cell penetrating peptide, preparing multifunctional TAT-MSCm@NanoSU6668 (T-MNS). The T-MNS at a concentration of 200 µg/mL was treated for CNV via eye drops, and accumulated in blood vessels with a high targeting performance, resulting in elimination of blood vessels and recovery of cornea transparency after 4 days of treatment. Meanwhile, drug safety test confirmed that T-MNS did not cause any damage to cornea, retina and other eye tissues. In conclusion, the T-MNS eye drop had the potential to treat CNV effectively and safely in a low dosing frequency, which broke new ground for CNV theranostics.


Asunto(s)
Córnea , Neovascularización de la Córnea , Nanopartículas , Soluciones Oftálmicas , Neovascularización de la Córnea/tratamiento farmacológico , Animales , Nanopartículas/química , Soluciones Oftálmicas/química , Córnea/metabolismo , Córnea/efectos de los fármacos , Ratones , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Tamaño de la Partícula , Humanos , Masculino , Ratones Endogámicos C57BL , Conejos
17.
World J Psychiatry ; 14(5): 695-703, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38808087

RESUMEN

BACKGROUND: Cognitive reserve (CR) and the catechol-O-methyltransferase (COMT) Val/Met polymorphism are reportedly linked to negative symptoms in schizophrenia. However, the regulatory effect of the COMT genotype on the relationship between CR and negative symptoms is still unexamined. AIM: To investigate whether the relationship between CR and negative symptoms could be regulated by the COMT Val/Met polymorphism. METHODS: In a cross-sectional study, 54 clinically stable patients with schizophrenia underwent assessments for the COMT genotype, CR, and negative symptoms. CR was estimated using scores in the information and similarities subtests of a short form of the Chinese version of the Wechsler Adult Intelligence Scale. RESULTS: COMT Met-carriers exhibited fewer negative symptoms than Val homozygotes. In the total sample, significant negative correlations were found between negative symptoms and information, similarities. Associations between information, similarities and negative symptoms were observed in Val homozygotes only, with information and similarities showing interaction effects with the COMT genotype in relation to negative symptoms (information, ß = -0.282, 95%CI: -0.552 to -0.011, P = 0.042; similarities, ß = -0.250, 95%CI: -0.495 to -0.004, P = 0.046). CONCLUSION: This study provides initial evidence that the association between negative symptoms and CR is under the regulation of the COMT genotype in schizophrenia.

18.
Sci Rep ; 14(1): 11486, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769368

RESUMEN

The purpose of this study was to investigate the relationship between circulating cytokines and liver function and prognosis of patients with advanced hepatocellular carcinoma (HCC) treated with radiotherapy combined with tislelizumab and anlotinib. The liver function indexes and pre-treatment levels of cytokines in 47 patients were measured by chemical method and flow cytometry. The median follow-up was 23.1 months. The objective response and the disease control rates were 46.8% and 68.1%, while overall survival (OS) and progression-free survival (PFS) were 12.6 and 11.4 months, respectively. Adverse events (2.1%) were grade 3-4. In addition to stage, intrahepatic metastasis and Child-Pugh score, pre-treatment interleukin-6 (IL-6) was the main cytokine affecting OS and PFS (p < 0.05). The OS (14.63 pg/mL as cutoff value) and PFS (9.85 pg/mL as cutoff value) of patients with low IL-6 levels exceeded those with high levels (21.0 and 6.9, 15.8 and 10.0 months, respectively). The risks of death and disease progression were reduced by 63.0% (HR = 0.37, 95% CI: 0.19-0.72) and 43.0% (HR = 0.57, 95% CI: 0.22-1.47), respectively. Pre-treatment IL-6 levels may be a simple and effective prognostic indicator for patients with advanced HCC treated with radiotherapy combined with immunotargeted therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma Hepatocelular , Citocinas , Indoles , Neoplasias Hepáticas , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Quinolinas/uso terapéutico , Quinolinas/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anciano , Indoles/uso terapéutico , Indoles/administración & dosificación , Pronóstico , Citocinas/sangre , Adulto , Interleucina-6/sangre , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
19.
Small ; : e2401447, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693087

RESUMEN

Topological defects are widely recognized as effective active sites toward a variety of electrochemical reactions. However, the role of defect curvature is still not fully understood. Herein, carbon nanomaterials with rich topological defect sites of tunable curvature is reported. The curved defective surface is realized by controlling the high-temperature pyrolytic shrinkage process of precursors. Theoretical calculations demonstrate bending the defect sites can change the local electronic structure, promote the charge transfer to key intermediates, and lower the energy barrier for oxygen reduction reaction (ORR). Experimental results convince structural superiority of highly-curved defective sites, with a high kinetic current density of 22.5 mA cm-2 at 0.8 V versus RHE for high-curvature defective carbon (HCDC), ≈18 times that of low-curvature defective carbon (LCDC). Further raising the defect densities in HCDC leads to the dual-regulated products (HCHDC), which exhibit exceptionally outstanding ORR activity in both alkaline and acidic media (half-wave potentials: 0.88 and 0.74 V), outperforming most of the reported metal-free carbon catalysts. This work uncovers the curvature-activity relationship in carbon defect for ORR and provides new guidance to design advanced catalysts via curvature-engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...