Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 355: 124164, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754692

RESUMEN

Air quality considerably affects bioaerosol dynamics within the atmosphere. Frequent haze events, with their associated alterations in bioaerosol composition, may pose potential health risks. This study investigated the microbial diversity, community structure, and factors of PM2.5 within an urban environment. We further examined the impact of haze on potentially pathogenic bacteria in bioaerosols, and analyzed the sources of haze pollution. Key findings revealed that the highest levels of microbial richness and diversity were associated with lightly polluted air conditions. While the overall bacterial community structure remained relatively consistent across different air quality levels, the relative abundance of specific bacterial taxa exhibited variations. Meteorological and environmental conditions, particularly sulfur dioxide, nitrogen dioxide, and carbon monoxide, exerted a greater influence on bacterial diversity and community structure compared to the physicochemical properties of the PM2.5 particles themselves. Notably, haze events were observed to strengthen interactions among airborne pathogens. Stable carbon isotope analysis suggested that coal combustion and automobile exhaust were likely to represent the primary source of haze during winter months. These findings indicate that adoption of clean energy alternatives such as natural gas and electricity, and the use of public transportation, is crucial to mitigate particle and harmful pollutant emissions, thereby protecting public health.


Asunto(s)
Aerosoles , Microbiología del Aire , Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , Bacterias/aislamiento & purificación , Ciudades , Dióxido de Azufre/análisis
2.
Water Res ; 258: 121764, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38761593

RESUMEN

Wastewater treatment plants (WWTPs) have been recognized as one of the major potential sources of the spread of airborne pathogenic microorganisms under the global pandemic of COVID-19. The differences in research regions, wastewater treatment processes, environmental conditions, and other aspects in the existing case studies have caused some confusion in the understanding of bioaerosol pollution characteristics. In this study, we integrated and analyzed data from field sampling and performed a systematic literature search to determine the abundance of airborne microorganisms in 13 countries and 37 cities across four continents (Asia, Europe, North America, and Africa). We analyzed the concentrations of bioaerosols, the core composition, global diversity, determinants, and potential risks of airborne pathogen communities in WWTPs. Our findings showed that the culturable bioaerosol concentrations of global WWTPs are 102-105 CFU/m3. Three core bacterial pathogens, namely Bacillus, Acinetobacter, and Pseudomonas, as well as two core fungal pathogens, Cladosporium and Aspergillus, were identified in the air across global WWTPs. WWTPs have unique core pathogenic communities and distinct continental divergence. The sources of airborne microorganisms (wastewater) and environmental variables (relative humidity and air contaminants) have impacts on the distribution of airborne pathogens. Potential health risks are associated with the core airborne pathogens in WWTPs. Our study showed the specificity, multifactorial influences, and potential pathogenicity of airborne pathogenic communities in WWTPs. Our findings can improve the understanding of the global diversity and biogeography of airborne pathogens in WWTPs, guiding risk assessment and control strategies for such pathogens. Furthermore, they provide a theoretical basis for safeguarding the health of WWTP workers and ensuring regional ecological security.


Asunto(s)
Microbiología del Aire , Bacterias , Hongos , Aguas Residuales , Aguas Residuales/microbiología , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Eliminación de Residuos Líquidos , SARS-CoV-2 , COVID-19 , Monitoreo del Ambiente , Humanos
3.
Water Res ; 256: 121646, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657309

RESUMEN

Sewage treatment processes are a critical anthropogenic source of bioaerosols and may present significant health risks to plant workers. Compared with the specialization and scale of urban sewage treatment, many decentralized treatment models are flexible and extensive. These treatment facilities are usually close to residential areas owing to the pipe network layout and other restrictions. Bioaerosols generated by these facilities may present a serious and widespread occupational and non-occupational exposure risk to nearby residents, particularly the elderly and children. An understanding of the characteristics and exposure risks of bioaerosols produced during decentralized sewage treatment is lacking. We compared bioaerosol emission characteristics and potential exposure risks under four decentralized sewage discharge methods and treatment models: small container collection (SCC), open-channel discharge (OCD), single household/combined treatment (SHCT), and centralized treatment (CT) in northwest China. The OCD mode had the highest bioaerosol production, whereas the CT mode had the lowest. The OCD model contained the most pathogenic bacterial species, up to 43 species, including Sphingomonas, Pseudomonas, Cladosporium, and Alternaria. Risk assessments indicated bioaerosol exposure was lower in the models with sewage treatment (SHCT and CT) than in those without (SCC and OCD). Different populations exhibited large variations in potential risks owing to differences in time spent indoors and outdoors. The highest risk was observed in males exposed to the SCC model. This study provides a theoretical basis and theories for the future joint prevention and control of the bioaerosol exposure risk from decentralized sewage treatment.


Asunto(s)
Aerosoles , Microbiología del Aire , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , China , Humanos , Medición de Riesgo , Bacterias
4.
Water Res ; 254: 121359, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428237

RESUMEN

Pathogenic microorganisms can cause infection, sepsis, and other diseases in humans. Although municipal wastewater plants are important sources and sinks for potential pathogenic microorganisms, data on rural wastewater treatment processes are limited. The proximity of rural wastewater facilities to human settlements and the trend toward wastewater resourcing could pose risks to humans. Here, a typical village in southern China was selected to analyze potential pathogenic microorganisms in wastewater, sewage sludge, and aerosols during the collection, treatment, and discharge of domestic wastewater. The succession characteristics and concentration variations of potential pathogenic microorganisms throughout the wastewater treatment process were identified using high-throughput sequencing and culture methods. Bacteria-associated health risks in facility aerosols were estimated based on average daily dose rates from inhalation and dermal exposure. Lower amounts of pathogenic bacteria and pathogenic fungi were detected in the effluent of the 1-ton treatment scale and the 10-ton treatment scale facilities, compared to those in the influent. Pathogen effluent concentrations were significantly lower than influent concentrations after treatment in rural wastewater facilities. 16 and 29 potential pathogenic bacteria and fungi were detected in aerosols from wastewater treatment facilities, respectively. Furthermore, the potential pathogen concentrations were higher than those in the background air. Aerobic units are the main source of pathogen emissions from aerosols. There were 42 potential pathogenic bacteria and 34 potential pathogenic fungi in the sewage sludge. Biochemical units were the main source of potential pathogens in sewage sludge, and more potential airborne pathogens originated from wastewater. In rural wastewater resourcing processes with greater pollutant exposure, the effluent of rural wastewater treatment facilities (WWTFs), downstream rivers, and facility aerosols, could be important potential sources of microbial risk. Inhalation is the main pathway of human exposure to airborne bacteria. Therefore, more attention should be focused on microbiological risk in rural wastewater treatment processes.


Asunto(s)
Aguas Residuales , Purificación del Agua , Humanos , Aguas del Alcantarillado/microbiología , Microbiología del Aire , Medición de Riesgo , Bacterias , Aerosoles , Hongos
5.
Waste Manag ; 175: 294-304, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237405

RESUMEN

Exposure to high levels of microbial contaminants during waste disposal leads to the development of various diseases, including respiratory symptoms and gastrointestinal infections. In this study, the emissions of airborne bacteria and fungi during the process of sludge bio-drying were investigated. The recorded emission levels of airborne bacteria and fungi were 2398 ± 1307 CFU/m3 and 1963 ± 468 CFU/m3, respectively. Viable bacteria were sized between 1.1 and 3.3 µm, while fungal particles were concentrated between 2.1 and 4.7 µm. High-throughput sequencing was used to conduct a microbial population assay, and correlation analysis was performed to estimate the relationship between key factors and bioaerosol emissions. The main bacteria identified were Bacillus sp., Lysinibacillus sp. YS11, unclassified Enterobacteriaceae, Brevundimonas olei, and Achromobacter sp.; the primary types of fungi were Aspergillus ochraceus, Gibberella intricans, Fusarium concentricum, Aspergillus qinqixianii, and Alternaria sp.; and the dominant opportunistic pathogens were Bacillus anthracis and Aspergillus ochraceus. At lower moisture and temperature levels, airborne bacterial concentrations were higher, especially the release of fine particles. In addition, moisture content had a significant impact on the microbial population in bioaerosols. This study provides insights into strategies for controlling bioaerosols in the exhaust gases of the sludge bio-drying process.


Asunto(s)
Bacillus , Aguas del Alcantarillado , Microbiología del Aire , Bacterias , Aerosoles/análisis , Hongos , Monitoreo del Ambiente
6.
iScience ; 26(12): 108378, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38025774

RESUMEN

In most economically underdeveloped areas, scattered farming and human‒livestock cohabitation are common. However, production of bioaerosols and their potential harm in these areas have not been previously researched. In this study, bioaerosol characteristics were analyzed in scattered farming areas in rural Northwest China. The highest bacteria, fungi, and Enterobacteria concentrations were 125609 ± 467 CFU/m³, 25175 ± 10305 CFU/m³, and 4167 ± 592 CFU/m³, respectively. Most bioaerosols had particle sizes >3.3 µm. A total of 71 bacterial genera and 16 fungal genera of potential pathogens were identified, including zoonotic potential pathogenic genera. Moreover, our findings showed that the scattered farming pattern of human‒animal cohabitation can affect the indoor air environment in the surrounding area, leading to chronic respiratory diseases in the occupants. Therefore, relevant government departments and farmers should enhance their awareness of bioaerosol risks and consider measures that may be taken to reduce them.

7.
Waste Manag Res ; : 734242X231190811, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555586

RESUMEN

Soil microplastic pollution is currently a worldwide concern. Microplastics are organic pollutants that are abundant in the natural environment, are persistent and difficult to degrade and may endanger human health while harming the environment. This article offers a bibliometric analysis of the environmental behaviour of microplastics in soils, as well as a thorough statistical analysis of research goals and trends in this field. We conducted a thorough search of all relevant literature from 2012 to 2022 in the Web of Science core database. The data analysis shows that, starting in 2012, there has been an upward trend in the number of articles about soil microplastic pollution. It can also be seen that China is relatively ahead of the curve in this area of research, followed by the United Kingdom and the United States. This article also systematically describes the research hotspots in this field. The results show that the current research on soil microplastics is mainly focused on their identification, enrichment and toxicity, whereas studies on the migration and transformation of soil microplastics and the mechanism of interaction with other pollutants are still lacking. Our results provide ideas and prospects for future research in this field.

9.
Environ Pollut ; 324: 121338, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36842620

RESUMEN

In rural China, the release of bioaerosols containing pathogens from solid waste dumps poses a potential health risk to the local population. Here, we sampled bioaerosols from rural solid waste-treatment in four provinces of northwest China to investigate their emission and dispersion characteristics in order to provide a scientific basis for control and risk reduction of bioaerosols released from rural sanitation facilities. The airborne bioaerosol concentrations and particle size distributions were calculated using an Anderson six-stage airborne microbial sampler and counting with its internal Petri dish culture. High-throughput sequencing was used to characterize the microbial composition at different sampling sites and to explore possible influencing factors, while the health risk associated with exposure was estimated based on average daily dose-rate. The highest concentration point values of bacteria and fungi in bioaerosols near the solid waste were 63,617 ± 15,007 and 8044 ± 893 CFU/m³, respectively. Furthermore, the highest concentration point values of Enterobacteriaceae was 502 ± 35 CFU/m³. Most bioaerosols were coarse particles larger than 3.3 µm. Potentially pathogenic genera of winter-indicator species detected in the air were primarily Delftia, Rhodococcus and Aspergillus. The composition of solid waste and environmental conditions are important factors in determining the characteristics of bioaerosols. Local residents are exposed to bioaerosols mainly through inhalation. Children are at a particularly high risk of exposure through both inhalation and skin contact. The results of this study show that bioaerosols in the vicinity of rural solid waste dumps pose a health risk to the surrounding population. More suitable risk assessment criteria for rural areas should be established, and corresponding control and protection measures should be taken from three aspects: generation source and transmission pathway, as well as the recipient.


Asunto(s)
Microbiología del Aire , Residuos Sólidos , Niño , Humanos , Aerosoles/análisis , Bacterias , Hongos , China , Monitoreo del Ambiente
10.
J Environ Manage ; 325(Pt B): 116659, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36335702

RESUMEN

Landfill sites are sources of gaseous volatile compounds. The dumping area (LDA) and leachate storage pool (LSP) of two typical rural domestic waste landfill sites in north China (NLF) and southwest China (SLF) were investigated. We found that 45, 46, 61 and 68 volatile organic compounds (VOC) were present in the air of NLF-LDA, NLF-LSP, SLF-LDA, and SLF-LSP, respectively. And there were 27, 29, 35 and 37 kinds of odorous compounds being detected. Oxygenated compounds (>48.88%), chlorinated compounds (>6.85%), and aromatics (>5.46%), such as organic acid, 1-chlorobutane, and benzene, were the most abundant compounds in both landfills. The SLF-LDA had the highest olfactory effect, with a corresponding total odor activity value of 29,635.39. The ozone-formation potential analysis showed that VOCs emitted from SLF landfills had significantly higher potential for ozone formation than those from NLF landfills, with ozone generation potentials of 166.02, 225.86, 2511.82, and 1615.99 mg/m3 for the NLF-LDA, NLF-LSP, SLF-LDA, and SLF-LSP, respectively. Higher chronic toxicity and cancer risk of VOCs were found in the SLF according to method of Risk Assessment Information System. Based on the sensitivity analysis by the Monte Carlo method, concentrations of benzene, propylene oxide, propylene, trichloroethylene, and N-nitrosodiethylamine, along with exposure duration, daily exposure time, and annual exposure frequency, significantly impacted the risk levels. We provide a scientific basis, which reflects the need for controlling and reducing gaseous pollutants from landfills, particularly rural residential landfills, which may improve rural sanitation.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Benceno , Instalaciones de Eliminación de Residuos , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis , China
11.
Environ Res ; 219: 115129, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549495

RESUMEN

Wastewater treatment plants (WWTP) are considered sources of bioaerosols emission that negatively affects the surrounding atmosphere. This study focused on Pseudomonas sp. Emissions in bioaerosols from a WWTP that adopts the A2O treatment process, and their inactivation through ultraviolet (UV) radiation. High-throughput sequencing was used to assay the microbial population, and functional composition profiles were predicted using 16 S rRNA sequencing data with PICRUSt2. Recorded emission levels of airborne bacteria and Pseudomonas sp. In WWTP were 130 ± 83-6113 ± 3015 CFU/m3 and 0-6431 ± 1945 CFU/m3, respectively. Bioaerosol emissions presented site-related and temporal variation. Over 80% of Pseudomonas sp. Were attached to coarse particles with sizes over 2.1 µm. Bioaerosol concentration and particle-size distribution in the air were closely related to ambient temperature, relative humidity, light intensity, and wind speed. Exposure to 45.67 µW/cm3 UV radiation led to a significant decline in bioaerosol concentrations in the air, and reduction rate reached 89.16% and 95.77% for airborne bacteria and Pseudomonas sp., respectively. The results suggested that UV radiation can be an effective method in reducing bioaerosols. Compared with other bacteria, Pseudomonas stutzeri and Bacillus sp. Are more resistant to UV radiation. The abundance of antibiotic resistance genes noticeably receded when exposed to UV irradiation. The relative abundance of cationic antimicrobial peptide resistance, categorized under human diseases in KEGG (level 3), significantly decreased in Pseudomonas sp. After 120 min of UV irradiation. This study provides a novel insight into the control of bioaerosol emissions carrying pathogenic bacteria.


Asunto(s)
Aguas Residuales , Purificación del Agua , Humanos , Microbiología del Aire , Pseudomonas/genética , Bacterias , Aerosoles
12.
J Environ Manage ; 326(Pt A): 116599, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36368203

RESUMEN

The waste transfer station (WTS) is an important link in the transfer of municipal solid waste (MSW) between the community and disposal terminals. While WTSs facilitate waste collection in communities, odorous gases and bioaerosols can escape from them, thereby negatively affecting their surroundings. In this study, the concentration, particle size distribution, pathogen population, and health risks of bioaerosols were analyzed at different locations in a transfer station. The results showed that the highest viable bacterial aerosol concentration was 10,353 ± 3701 CFU/m3, which was at 5 m from the disposal site. Fifty-three bacterial species, including pathogens, were detected. Of these, 39 were human pathogenic bacteria directly originating from the WTS. Furthermore, health risk assessments indicated unacceptable levels of non-carcinogenic risk for operational workers caused by bacterial aerosols of the WTS work area. In addition, bacterial aerosols may pose a severe health risk to children within a 15 m area of the WTS. The results of this study provide a scientific basis to control and reduce the risk associated with bioaerosol exposure in solid WTSs.


Asunto(s)
Microbiología del Aire , Bacterias , Niño , Humanos , Aerosoles , Residuos Sólidos , Medición de Riesgo
13.
Environ Pollut ; 310: 119870, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35921944

RESUMEN

Irrational use of antibiotics produces a large number of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Wastewater treatment plants (WWTPs) act as important sources and sinks of ARGs, and play an important role in their generation, treatment, and dissemination. This study summarizes the types, concentrations, and factors of ARGs in WWTPs, investigates the sources of ARGs in wastewater, compares the removal efficiencies of different treatment processes on ARGs, and analyzes the potential risks of ARGs accumulation in effluent, sludge and their emission into the air. The results show that the main ARGs detected in the influent of WWTPs are the genes resistant to macrolides (ermB, ermF), tetracyclines (tetW, tetA, tetC), sulfonamides (sul1, sul2), and ß-lactams (blaOXA, blaTEM). The concentrations of ARGs in the influent of the WWTPs are 2.23 × 102-3.90 × 109 copies/mL. Wastewater quality and microbial community are the dominant factors that affect the distribution characteristics of ARGs. The accumulation of ARGs in effluent, sludge, and aerosols pose potential risks to the regional ecological environment and human health. Based on these results, research trends with respect to ARGs in WWTPs are also prospected.


Asunto(s)
Aguas Residuales , Purificación del Agua , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Antibacterianos , Farmacorresistencia Microbiana , Genes Bacterianos , Humanos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
14.
Waste Manag ; 149: 248-258, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35760013

RESUMEN

Composting is an effective way to prevent and control the spread of pathogenic microorganisms which could put potential risk to humans and environment, from rural solid waste, especially sewage sludge and food waste. In the study, we aim to analyze the changes of pathogenic bacteria during the co-composting of rural sewage sludge and food waste. The results showed that only 27 pathogenic bacteria were detected after composting, compared to 50 pathogenic bacteria in the raw mixed pile. About 74% of pathogen concentrations dropped below 1000 copies/g after composting. Lactobacillus, Bacillus, Paenibacillus and Comamonas were the core pathogenic bacteria in the compost, of which concentrations were all significantly lower than that in the raw mixed pile at the end of composting. The concentration of Lactobacillus decreased to 3.03 × 103 copies/g compared to 0 d with 1.25 × 109 copies/g by the end of the composting, while that of Bacillus, Paenibacillus and Comamonas decreased to 2.77 × 104 copies/g, 2.13 × 104 copies/g and 3.38 × 102 copies/g, respectively, with 1.26 × 107 copies/g, 4.71 × 106 copies/g, 1.69 × 108 copies/g on 0 d. Redundancy analysis (RDA) indicated that physicochemical factors and substances could affect the changes of pathogenic bacteria during composting, while temperature was the key influencing factor. In addition, certain potential pathogenic bacteria, such as Bacteroides-Bifidobacterium, show statistically strong and significant co-occurrence during composting, which may increase the risk of multiple infections and also influence their distribution. These findings provide a theoretical reference for biosafety prevention and control in the treatment and disposal of rural solid waste.


Asunto(s)
Bacillus , Compostaje , Eliminación de Residuos , Bacterias , Alimentos , Humanos , Aguas del Alcantarillado/química , Suelo , Residuos Sólidos
15.
Environ Res ; 209: 112879, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35134380

RESUMEN

The impact of odorous gases emitted from refuse transfer stations has always been a concern raised by the surrounding residents. The emitted volatile organic compounds (VOCs) and odors were investigated in a rural solid waste transfer station (RSWTS) located in Southwest China. A total of 70 VOCs were identified and quantified. The total VOCs (TVOCs) concentrations varied from 848.38 to 31193.24 µg/m3. Inorganic odor and greenhouse gases concentrations ranged from 39.11 to 470.14 µg/m3 and 1.03-525.42 µg/m3, respectively. Oxygenated compounds contributed the most (58.25%) to the VOCs. Among the oxygenated compounds, ketones, esters, and ethers were the dominant categories, accounting for 67.5%, 12.70%, and 11.85%, respectively. The key odorants included propionaldehyde, hexanaldehyde, propionic acid, acetaldehyde, and disopropyl ether. N-nitrosodiethylamine, acrylonitrile, and 1,3-Butadiene were the three main carcinogens that pose considerable risk to human health. Allyl chloride was the most non-carcinogenic pathogen among the VOCs detected in RSWTS. With diffusion in the downwind direction, the concentration of VOCs decreased gradually, and their risks weakened accordingly. At the sampling site of RSWTS-10, located 100 m away from RSWTS, acrylonitrile and 1,3-Butadiene still presented an unacceptable carcinogenic risk to human health. This study provides new data for assessing the emission characteristics, olfactory effects, and health risks of trace VOCs, especially those released from RSWTS.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Humanos , Odorantes/análisis , Residuos Sólidos , Compuestos Orgánicos Volátiles/análisis
16.
Environ Int ; 161: 107127, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35180669

RESUMEN

Pathogenic bacteria and antibiotic resistance genes (ARGs) in bioaerosols are major threats to human health. In this study, the microbial community structure and ARG distribution characteristics of airborne bacteria in total suspended particulates (TSP) and PM2.5 were investigated under different air quality levels in Xinxiang, Central China. The results revealed that with the deterioration of air quality, the concentrations of airborne bacteria in both TSP and PM2.5 decreased; however, the relative amounts of pathogenic bacteria increased. The predominant genera in pathogenic bacteria of Bacillus, Sphingomonas, Corynebacterium, Rhodococcus, and Staphylococcus were identified in both TSP and PM2.5. Although the airborne bacteria concentrations and absolute abundances of ARGs in TSP were higher than those in PM2.5 under identical air quality conditions, the bacterial community structure and relative amounts of pathogenic bacteria were similar. In addition, the relationship between environmental factors of ions, metal elements, and meteorological parameters and the community structures of airborne bacteria and pathogenic bacteria were also analyzed. The effects of soluble ions and metal elements on several dominant genera of total bacteria and pathogenic bacteria differed, probably due to the strong tolerance of pathogenic bacteria to harsh atmospheric environments Different subtypes of ARGs showed various distribution characteristics with variations in air quality. The deterioration of air quality can inhibit the dissemination of ARGs, as the minimum values of all ARGs and class 1 integrase intI1 were observed under Severely Polluted conditions. This study provides a comprehensive understanding of the effect of air pollution levels on the airborne bacteria community composition and ARG distribution.


Asunto(s)
Contaminación del Aire , Antibacterianos , Microbiología del Aire , Contaminación del Aire/análisis , Antibacterianos/farmacología , Bacterias , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Genes Bacterianos , Humanos
17.
Chemosphere ; 286(Pt 1): 131655, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34315083

RESUMEN

Semi-continuous experiments were carried out in lab-scale continuous stirred tank reactors to evaluate the effects of fermentation temperature (37 ± 1 °C and 55 ± 1 °C) and total solids (TS) contents (3 %, 6 %, and 12 %) on biohydrogen production from the dark fermentations (DF) of rice straw (RS) and the total operation duration was 105 days. The experimental results show that biohydrogen production (0.46-63.60 mL/g VSadded) from the thermophilic (55 ± 1 °C) DF (TDF) was higher than the mesophilic (37 ± 1 °C) DF (MDF) (0.19-2.13 mL/g VSadded) at the three TS contents, and achieved the highest of 63.60 ± 2.98 mL/g VSadded at TS = 6 % in TDF. The pH, NH4+-N and total volatile fatty acid of fermentation liquids in the TDF were all higher than those in the MDF. The high abundance of lactic acid-producing bacteria resulted in low biohydrogen produced at TS = 3 %. Under the TDF with TS = 6 %, the highest abundance of hydrolytic bacteria (Ruminiclostridium 54.24 %) led to the highest biohydrogen production. The increase of TS content from 6 % to 12 % induced degradation pathway changes from biohydrogen production to methane production. This study demonstrated that butyric acid fermentation was the main pathway to produce biohydrogen from RS in both DFs.


Asunto(s)
Microbiota , Oryza , Reactores Biológicos , Fermentación , Hidrógeno , Temperatura
18.
Bioresour Technol ; 344(Pt B): 126173, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34728354

RESUMEN

Long-term semi-continuous experiments were carried out under three feedstock conditions to study the effects of mixing ratio and total solids (TS) content on temperature-phased anaerobic codigestion of rice straw (RS) and pig manure (PM). The results showed that biohythane only produced from the mixture with 6% TS content and its average content were 12.83 ± 1.19% (hydrogen) and 23.68 ± 1.12% (methane). Increasing mixture TS content and decreasing its RS ratio increased biohythane production and organic matter removal by creating a suitable process pH and increasing the anaerobic reaction rates. The highest biohythane production of the mixture reached 73.09 ± 3.03 ml/g VS (hydrogen) and 235.81 ± 9.30 ml/g VS (methane) at a mixing ratio of 5:1 and TS content of 6%. A variety of hydrogen-producing bacteria were found in the thermophilic reactor and Clostridium_sensu_stricto_1 played an important role. Butyric acid fermentation is the main hydrogen-producing pathway. Methanobacterium and Methanosaeta were dominant archaea in the mesophilic reactor.


Asunto(s)
Estiércol , Oryza , Anaerobiosis , Animales , Biocombustibles , Reactores Biológicos , Metano , Porcinos , Temperatura
19.
Chemosphere ; 274: 129787, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33540305

RESUMEN

The anaerobic co-digestion (coAD) of swine manure (SM) and rice straw (RS) is appealing for renewable energy recovery and waste treatment worldwidely. Improving its performance is very important for its application. In this study, long-term semi-continuous experiments were conducted to evaluate the improving effects of digestate recirculation on the performance, energy recovery, and microbial community of two-stage thermophilic-mesophilic coAD of swine manure (SM) and rice straw (RS). The experimental results indicated that the coAD systems of SM and RS (mixing ratio of 3:1) with or without digestate recirculation could not realize phase separation. The reactors of both coAD systems were characterized by pH values ranging from 7.74 to 7.85, methane production as 0.41 ± 0.02 and 0.44 ± 0.03 L/L/d, and stable operation. Notably, digestate recirculation increased total methane production, organic matter removal, and reaction rate of the coAD system by 9.92 ± 5.08, 5.22 ± 1.94, and 9.73-12.60%, respectively. Digestate recirculation improved the performance of the coAD by significantly increasing the abundance of Methanosarcina (from 4.1% to 7.5%-10.7% and 35.7%) and decreasing that of Methanothermobacter (from 94.2% to 87.3%-83.6% and 56.8%). Thus, the main methanogenesis pathway of the coAD system was changed by digestate recirculation and the methane production was effectively improved. Although the energy input of the coAD system increased by 30.26%, digestate recirculation improved the energy balance of the total system by 6.83%.


Asunto(s)
Estiércol , Oryza , Anaerobiosis , Animales , Biocombustibles , Reactores Biológicos , Digestión , Metano , Porcinos
20.
Chemosphere ; 272: 129582, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33476794

RESUMEN

Landfill sites are regarded as sources of volatile compounds (VOCs) and odors emitted to the atmosphere. Surface emissions of VOCs and odors were investigated in a rural domestic waste landfill site located in southwest China. A total of 76 chemical compounds belonging to 3 chemical families were identified and quantified. The total number of VOCs (TVOC) detected ranged from 18.1 to 806.3 mg/m3, while odorous gases and greenhouse gases ranged from 0.4 to 21.2 and 0-100.5 mg/m3, respectively. High emissions were found in the air surrounding the leachate storage pool (LSP) and dumping area (DPA). The dominant species of VOCs were hexaldehyde, m-xylene, propylene oxide, acetophenone, and 2-butanone. The traceability analysis showed that the odors and VOCs diffused to the downwind boundary mainly came from the DPA and LSP. According to the olfactory effect analysis and cancer risk assessment, the main odor-causing gaseous pollutants were hydrogen sulfide, propionic acid, styrene, and 2-pentanone, while benzene, trichlorethylene, and 1,3-butadiene were the dominant carcinogens. This study provides new insights into the emission characteristics, olfactory effects, and cancer risks of VOCs and odors emitted from rural domestic solid waste landfill sites.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Humanos , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Instalaciones de Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...