Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small ; : e2403778, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38948957

RESUMEN

Bismuth-based catalysts are effective in converting carbon dioxide into formate via electrocatalysis. Precise control of the morphology, size, and facets of bismuth-based catalysts is crucial for achieving high selectivity and activity. In this work, an efficient, large-scale continuous production strategy is developed for achieving a porous nanospheres Bi2O3-FDCA material. First-principles simulations conducted in advance indicate that the Bi2O3 (111)/(200) facets help reduce the overpotential for formate production in electrocatalytic carbon dioxide reduction reaction (ECO2RR). Subsequently, using microfluidic technology and molecular control to precisely adjust the amount of 2, 5-furandicarboxylic acid, nanomaterials rich in (111)/(200) facets are successfully synthesized. Additionally, the morphology of the porous nanospheres significantly increases the adsorption capacity and active sites for carbon dioxide. These synergistic effects allow the porous Bi2O3-FDCA nanospheres to stably operate for 90 h in a flow cell at a current density of ≈250 mA cm- 2, with an average Faradaic efficiency for formate exceeding 90%. The approach of theoretically guided microfluidic technology for the large-scale synthesis of finely structured, efficient bismuth-based materials for ECO2RR may provide valuable references for the chemical engineering of intelligent nanocatalysts.

2.
Chem Commun (Camb) ; 60(15): 2086-2089, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293904

RESUMEN

Morphology control plays a pivotal role in achieving an exceptionally efficient electrocatalyst with abundant active sites and outstanding electrical conductivity. In this study, we employed a sophisticated chemical nanoengineering technique to fabricate an exquisitely thin NiFe(OH)x electrocatalyst on Ni3S2 nanosheets. Firstly, the Ni3S2 nanosheets were synthesized through an innovative in situ one-step sulfurization reaction of the Ni(OH)2 nanosheets grown on Ni foam. Subsequently, a remarkable ultrathin layer of NiFe(OH)x was precisely deposited onto the surface of the Ni3S2 to form a captivating core-shell structure using a chemical dipping method. The resulting electrode, denoted as NiFe(OH)x/Ni3S2/NF, exhibited exceptional electrocatalytic activity and durability towards the oxygen evolution reaction (OER), owing to its expansive specific surface area, rapid electron transport, and robust interlayer bonding. Notably, this electrode achieved an impressive current density of 100 mA cm-2 at an astonishingly low overpotential of 218 mV while maintaining a low Tafel slope of 37.9 mV dec-1 and remarkable stability for up to 12 days in 1 M KOH aqueous solution. This work presents an alluring novel approach for constructing highly efficient ultrathin catalysts for water splitting.

3.
Chem Commun (Camb) ; 59(77): 11572-11575, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37691447

RESUMEN

A well-designed support material between catalyst and substrate can always significantly enhance the performance of an electrode on water oxidation. In this work, a functional Ni and N-doped carbon layer (NNC) was designed on carbon paper (CP) via pyrolysis by using a controlled electrodeposited polyporphyrin as a precursor. Consequently, the fabricated NiFe-LDH/NNC/CP achieved a catalytic current density of 100 mA cm-2 at a small overpotential of 231 mV with a low Tafel slope of 26.0 mV dec-1, as well as high durability for more than 360 h. The insights are that N-doping reinforces the hydrophilicity and the catalyst binding capacity, while Ni-doping intensifies the conductivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...