Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(5): e0019724, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38593321

RESUMEN

Noroviruses are major causative agents of acute nonbacterial gastroenteritis in humans. There are neither antiviral therapeutic agents nor vaccines for noroviruses at this time. To evaluate the potential usefulness of two previously isolated human monoclonal antibody fragments, CV-1A1 and CV-2F5, we first conducted a single-particle analysis to determine the cryo-electron microscopy structure of virus-like particles (VLPs) from the genogroup I genotype 4 (GI.4) Chiba strain uniformly coated with CV-1A1 fragments. The results revealed that the GI.4-specific CV-1A1 antibody bound to the P2 subdomain, in which amino acids are less conserved and variable. Interestingly, a part of the CV-1A1 intrudes into the histo-blood group antigen-binding site, suggesting that this antibody might exert neutralizing activity. Next, we determined the crystal structure of the protruding (P) domain of the capsid protein in the complex form with the CV-2F5 antibody fragment. Consistent with the cross-reactivity, the CV-2F5 bound to the P1 subdomain, which is rich in amino acids conserved among the GI strains, and moreover induced a disruption of Chiba VLPs. These results suggest that the broadly reactive CV-2F5 antibody can be used as both a universal detection reagent and an antiviral drug for GI noroviruses. IMPORTANCE: We conducted the structural analyses of the VP1 protein from the GI.4 Chiba norovirus to identify the binding sites of the previously isolated human monoclonal antibodies CV-1A1 and CV-2F5. The cryo-electron microscopy of the Chiba virus-like particles (VLPs) complexed with the Fv-clasp forms of GI.4-specific CV-1A1 revealed that this antibody binds to the highly variable P2 subdomain, suggesting that this antibody may have neutralizing ability against the GI.4 strains. X-ray crystallography revealed that the CV-2F5 antibody bound to the P1 subdomain, which is rich in conserved amino acids. This result is consistent with the ability of the CV-2F5 antibody to react with a wide variety of GI norovirus strains. It is also found that the CV-2F5 antibody caused a disruption of VLPs. Our findings, together with previous reports on the structures of VP1 proteins and VLPs, are expected to open a path for the structure-based development of antivirals and vaccines against norovirus disease.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Proteínas de la Cápside , Microscopía por Crioelectrón , Norovirus , Norovirus/inmunología , Microscopía por Crioelectrón/métodos , Humanos , Anticuerpos Monoclonales/inmunología , Cristalografía por Rayos X , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Sitios de Unión , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Modelos Moleculares
2.
iScience ; 26(6): 106955, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37288342

RESUMEN

Several antibody therapeutics have been developed against SARS-CoV-2; however, they have attenuated neutralizing ability against variants. In this study, we generated multiple broadly neutralizing antibodies from B cells of convalescents, by using two types of receptor-binding domains, Wuhan strain and the Gamma variant as bait. From 172 antibodies generated, six antibodies neutralized all strains prior to the Omicron variant, and the five antibodies were able to neutralize some of the Omicron sub-strains. Structural analysis showed that these antibodies have a variety of characteristic binding modes, such as ACE2 mimicry. We subjected a representative antibody to the hamster infection model after introduction of the N297A modification, and observed a dose-dependent reduction of the lung viral titer, even at a dose of 2 mg/kg. These results demonstrated that our antibodies have certain antiviral activity as therapeutics, and highlighted the importance of initial cell-screening strategy for the efficient development of therapeutic antibodies.

3.
Commun Biol ; 6(1): 284, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932164

RESUMEN

The control of cell movement through manipulation of cytoskeletal structure has therapeutic prospects notably in the development of novel anti-metastatic drugs. In this study, we determine the structure of Ras-binding domain (RBD) of ELMO1, a protein involved in cytoskeletal regulation, both alone and in complex with the activator RhoG and verify its targetability through computational nanobody design. Using our dock-and-design approach optimized with native-like initial pose selection, we obtain Nb01, a detectable binder from scratch in the first-round design. An affinity maturation step guided by structure-activity relationship at the interface generates 23 Nb01 sequence variants and 17 of them show enhanced binding to ELMO1-RBD and are modeled to form major spatial overlaps with RhoG. The best binder, Nb29, inhibited ELMO1-RBD/RhoG interaction. Molecular dynamics simulation of the flexibility of CDR2 and CDR3 of Nb29 reveal the design of stabilizing mutations at the CDR-framework junctions potentially confers the affinity enhancement.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Simulación de Dinámica Molecular , Proteínas de Unión al GTP rho , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
4.
iScience ; 25(12): 105596, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36406861

RESUMEN

The use of therapeutic neutralizing antibodies against SARS-CoV-2 infection has been highly effective. However, there remain few practical antibodies against viruses that are acquiring mutations. In this study, we created 494 monoclonal antibodies from patients with COVID-19-convalescent, and identified antibodies that exhibited the comparable neutralizing ability to clinically used antibodies in the neutralization assay using pseudovirus and authentic virus including variants of concerns. These antibodies have different profiles against various mutations, which were confirmed by cell-based assay and cryo-electron microscopy. To prevent antibody-dependent enhancement, N297A modification was introduced. Our antibodies showed a reduction of lung viral RNAs by therapeutic administration in a hamster model. In addition, an antibody cocktail consisting of three antibodies was also administered therapeutically to a macaque model, which resulted in reduced viral titers of swabs and lungs and reduced lung tissue damage scores. These results showed that our antibodies have sufficient antiviral activity as therapeutic candidates.

5.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36142308

RESUMEN

Genetically encoded caged amino acids can be used to control the dynamics of protein activities and cellular localization in response to external cues. In the present study, we revealed the structural basis for the recognition of O-(2-nitrobenzyl)-L-tyrosine (oNBTyr) by its specific variant of Methanocaldococcus jannaschii tyrosyl-tRNA synthetase (oNBTyrRS), and then demonstrated its potential availability for time-resolved X-ray crystallography. The substrate-bound crystal structure of oNBTyrRS at a 2.79 Å resolution indicated that the replacement of tyrosine and leucine at positions 32 and 65 by glycine (Tyr32Gly and Leu65Gly, respectively) and Asp158Ser created sufficient space for entry of the bulky substitute into the amino acid binding pocket, while Glu in place of Leu162 formed a hydrogen bond with the nitro moiety of oNBTyr. We also produced an oNBTyr-containing lysozyme through a cell-free protein synthesis system derived from the Escherichia coli B95. ΔA strain with the UAG codon reassigned to the nonnatural amino acid. Another crystallographic study of the caged protein showed that the site-specifically incorporated oNBTyr was degraded to tyrosine by light irradiation of the crystals. Thus, cell-free protein synthesis of caged proteins with oNBTyr could facilitate time-resolved structural analysis of proteins, including medically important membrane proteins.


Asunto(s)
Methanocaldococcus/enzimología , Tirosina-ARNt Ligasa , Codón de Terminación/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Muramidasa/metabolismo , Tirosina/química , Tirosina/metabolismo , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo
6.
J Biol Chem ; 298(8): 102164, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35732209

RESUMEN

Acetylated lysine residues (Kac) in histones are recognized by epigenetic reader proteins, such as Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins. Human YEATS domains bind to the acetylated N-terminal tail of histone H3; however, their Kac-binding preferences at the level of the nucleosome are unknown. Through genetic code reprogramming, here, we established a nucleosome core particle (NCP) array containing histones that were acetylated at specific residues and used it to compare the Kac-binding preferences of human YEATS domains. We found that AF9-YEATS showed basal binding to the unmodified NCP and that it bound stronger to the NCP containing a single acetylation at one of K4, K9, K14, or K27 of H3, or to histone H4 multi-acetylated between K5 and K16. Crystal structures of AF9-YEATS in complex with an H4 peptide diacetylated either at K5/K8 or K8/K12 revealed that the aromatic cage of the YEATS domain recognized the acetylated K8 residue. Interestingly, E57 and D103 of AF9, both located outside of the aromatic cage, were shown to interact with acetylated K5 and K12 of H4, respectively, consistent with the increase in AF9-YEATS binding to the H4K8-acetylated NCP upon additional acetylation at K5 or K12. Finally, we show that a mutation of E57 to alanine in AF9-YEATS reduced the binding affinity for H4 multiacetylated NCPs containing H4K5ac. Our data suggest that the Kac-binding affinity of AF9-YEATS increases additively with the number of Kac in the histone tail.


Asunto(s)
Histonas , Nucleosomas , Acetilación , Histonas/metabolismo , Humanos , Lisina/metabolismo , Dominios Proteicos
7.
Int J Biol Macromol ; 210: 172-181, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35526766

RESUMEN

Alzheimer's disease (AD) is one of the most common, progressive neurodegenerative disorders affecting the aged populations. Though various disease pathologies have been suggested for AD, the impairment of the cholinergic system is one of the critical factors for the disease progression. Restoration of the cholinergic transmission through acetylcholinesterase (AChE) inhibitors is a promising disease modifying therapy. Being the first marketed drug for AD, tacrine reversibly inhibits AChE and thereby slows the breakdown of the chemical messenger acetylcholine (ACh) in the brain. However, the atomic level of interactions of tacrine towards human AChE (hAChE) is unknown for years. Hence, in the current study, we report the X-ray structure of hAChE-tacrine complex at 2.85 Å resolution. The conformational heterogeneity of tacrine within the electron density was addressed with the help of molecular mechanics assisted methods and the low-energy ligand configuration is reported, which provides a mechanistic explanation for the high binding affinity of tacrine towards AChE. Additionally, structural comparison of reported hAChE structures sheds light on the conformational selection and induced fit effects of various active site residues upon binding to different ligands and provides insight for future drug design campaigns against AD where AChE is a drug target.


Asunto(s)
Enfermedad de Alzheimer , Tacrina , Acetilcolinesterasa/metabolismo , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Colinesterasa/química , Descubrimiento de Drogas , Humanos , Ligandos , Estructura Molecular , Tacrina/química , Tacrina/farmacología , Tacrina/uso terapéutico
8.
FEBS Open Bio ; 12(3): 560-570, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038379

RESUMEN

Noroviruses have been identified as major causative agents of acute nonbacterial gastroenteritis in humans. Histo-blood group antigens (HBGAs) are thought to play a major role among the host cellular factors influencing norovirus infection. Genogroup I, genotype 9 (GI.9) is the most recently identified genotype within genogroup I, whose representative strain is the Vancouver 730 norovirus. However, the molecular interactions between host antigens and the GI.9 capsid protein have not been investigated in detail. In this study, we demonstrate that the GI.9 norovirus preferentially binds Lewis antigens over blood group A, B, and H antigens, as revealed by an HBGA binding assay using virus-like particles. We determined the crystal structures of the protruding domain of the GI.9 capsid protein in the presence or absence of Lewis antigens. Our analysis demonstrated that Lewis fucose (α1-3/4 fucose) represents a key moiety for the GI.9 protein-HBGA interaction, thus suggesting that Lewis antigens might play a critical role during norovirus infection. In addition to previously reported findings, our observations may support the future design of antiviral agents and vaccines against noroviruses.


Asunto(s)
Antígenos de Grupos Sanguíneos , Norovirus , Sitios de Unión , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Cristalografía por Rayos X , Fucosa/química , Fucosa/metabolismo , Humanos , Modelos Moleculares , Norovirus/química , Norovirus/genética , Norovirus/metabolismo , Unión Proteica
9.
Sci Adv ; 7(30)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34290093

RESUMEN

The dedicator of cytokinesis (DOCK) family of guanine nucleotide exchange factors (GEFs) promotes cell motility, phagocytosis, and cancer metastasis through activation of Rho guanosine triphosphatases. Engulfment and cell motility (ELMO) proteins are binding partners of DOCK and regulate Rac activation. Here, we report the cryo-electron microscopy structure of the active ELMO1-DOCK5 complex bound to Rac1 at 3.8-Å resolution. The C-terminal region of ELMO1, including the pleckstrin homology (PH) domain, aids in the binding of the catalytic DOCK homology region 2 (DHR-2) domain of DOCK5 to Rac1 in its nucleotide-free state. A complex α-helical scaffold between ELMO1 and DOCK5 stabilizes the binding of Rac1. Mutagenesis studies revealed that the PH domain of ELMO1 enhances the GEF activity of DOCK5 through specific interactions with Rac1. The structure provides insights into how ELMO modulates the biochemical activity of DOCK and how Rac selectivity is achieved by ELMO.

10.
FEBS Lett ; 594(10): 1532-1549, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32017069

RESUMEN

Activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor, a central player in immune response regulation, is based on phosphorylation of inhibitor of kappaB alpha (IκBα) by the Inhibitor of kappaB kinase (IKK) that triggers IκBα degradation. Although inhibitor of kappaB beta (IκBß) is structurally similar to IκBα, its precise characteristics remain undefined. Herein, we report that the molecular interactivity of IκBß with the kinase-active region of IKK subunit 2 (IKK2), as well as its phosphorylation status, differs markedly from those of IκBα. A mass spectrometry analysis revealed that IκBß phosphorylation sites are distributed in its C-terminal region, whereas IκBα phosphorylation sites are located in the N-terminal region. Furthermore, IKK2 phosphorylation sites in IκBß are found in a region distinct from typical degradation signals, such as phosphodegron and proline/glutamic acid/serine/threonine-rich sequence (PEST) motifs. Mutation of the IκBß phosphorylation sites enhances its resistance to homeostatic proteasomal degradation. These findings contribute a novel concept in NF-κB/IKK signalling research.


Asunto(s)
Biocatálisis , Quinasa I-kappa B/metabolismo , Proteínas I-kappa B/química , Proteínas I-kappa B/metabolismo , Inhibidor NF-kappaB alfa/química , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Secuencias de Aminoácidos , Homeostasis , Humanos , Modelos Moleculares , Mutación , Fosforilación/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Transducción de Señal
11.
Chembiochem ; 19(9): 979-985, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29665240

RESUMEN

The ten-eleven translocation (TET) protein family, consisting of three isoforms (TET1/2/3), have been found in mammalian cells and have a crucial role in 5-methylcytosine demethylation in genomic DNA through the catalysis of oxidation reactions assisted by 2-oxoglutarate (2OG). DNA methylation/demethylation contributes to the regulation of gene expression at the transcriptional level, and recent studies have revealed that TET1 is highly elevated in malignant cells of various diseases and related to malignant alteration. TET1 inhibitors based on a scaffold of thioether macrocyclic peptides, which have been discovered by the random nonstandard peptide integrated discovery (RaPID) system, are reported. The affinity-based selection was performed against the TET1 compact catalytic domain (TET1CCD) to yield thioether macrocyclic peptides. These peptides exhibited inhibitory activity of the TET1 catalytic domain (TET1CD), with an IC50 value as low as 1.1 µm. One of the peptides, TiP1, was also able to inhibit TET1CD over TET2CD with tenfold selectivity, although it was likely to target the 2OG binding site; this provides a good starting point to develop more selective inhibitors.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Compuestos Macrocíclicos/farmacología , Oxigenasas de Función Mixta/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Sulfuros/farmacología , Secuencia de Aminoácidos , Dominio Catalítico/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Compuestos Macrocíclicos/química , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , Péptidos Cíclicos/química , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Sulfuros/química
12.
J Biochem ; 162(5): 357-369, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992119

RESUMEN

Cell-free protein synthesis is a useful method for preparing proteins for functional or structural analyses. However, batch-to-batch variability with regard to protein synthesis activity remains a problem for large-scale production of cell extract in the laboratory. To address this issue, we have developed a novel procedure for large-scale preparation of bacterial cell extract with high protein synthesis activity. The developed procedure comprises cell cultivation using a fermentor, harvesting and washing of cells by tangential flow filtration, cell disruption with high-pressure homogenizer and continuous diafiltration. By optimizing and combining these methods, ∼100 ml of the cell extract was prepared from 150 g of Escherichia coli cells. The protein synthesis activities, defined as the yield of protein per unit of absorbance at 260 nm of the cell extract, were shown to be reproducible, and the average activity of several batches was twice that obtained using a previously reported method. In addition, combinatorial use of the high-pressure homogenizer and diafiltration increased the scalability, indicating that the cell concentration at disruption varies from 0.04 to 1 g/ml. Furthermore, addition of Gam protein and examinations of the N-terminal sequence rendered the extract prepared here useful for rapid screening with linear DNA templates.


Asunto(s)
Sistema Libre de Células , Proteínas de Unión al ADN , Escherichia coli , Proteínas Fluorescentes Verdes , Biosíntesis de Proteínas , Proteínas Virales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Biosíntesis de Proteínas/fisiología , Reproducibilidad de los Resultados , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
Biochem J ; 474(18): 3207-3226, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28768733

RESUMEN

Really interesting new gene (RING)-finger protein 52 (RNF52), an E3 ubiquitin ligase, is found in eukaryotes from yeast to humans. Human RNF52 is known as breast cancer type 1 susceptibility protein (BRCA1)-associated protein 2 (BRAP or BRAP2). The central catalytic domain of BRAP comprises four subdomains: nucleotide-binding α/ß plait (NBP), really interesting new gene (RING) zinc finger, ubiquitin-specific protease (UBP)-like zinc finger (ZfUBP), and coiled-coil (CC). This domain architecture is conserved in RNF52 orthologs; however, the domain's function in the ubiquitin system has not been delineated. In the present study, we discovered that the RNF52 domain, comprising NBP-RING-ZfUBP-CC, binds to ubiquitin chains (oligo-ubiquitin) but not to the ubiquitin monomers, and can utilize various ubiquitin chains for ubiquitylation and auto-ubiquitylation. The RNF52 domain preferentially bound to M1- and K63-linked di-ubiquitin chains, weakly to K27-linked chains, but not to K6-, K11-, or K48-linked chains. The binding preferences of the RNF52 domain for ubiquitin-linkage types corresponded to ubiquitin usage in the ubiquitylation reaction, except for K11-, K29-, and K33-linked chains. Additionally, the RNF52 domain directly ligated the intact M1-linked, tri-, and tetra-ubiquitin chains and recognized the structural alterations caused by the phosphomimetic mutation of these ubiquitin chains. Full-length BRAP had nearly the same specificity for the ubiquitin-chain types as the RNF52 domain alone. Mass spectrometry analysis of oligomeric ubiquitylation products, mediated by the RNF52 domain, revealed that the ubiquitin-linkage types and auto-ubiquitylation sites depend on the length of ubiquitin chains. Here, we propose a model for the oligomeric ubiquitylation process, controlled by the RNF52 domain, which is not a sequential assembly process involving monomers.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Humanos , Dominios y Motivos de Interacción de Proteínas , Homología de Secuencia , Transducción de Señal , Ubiquitina/química , Ubiquitina-Proteína Ligasas/química , Ubiquitinación
14.
J Struct Funct Genomics ; 8(4): 173-91, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18167031

RESUMEN

A two-step PCR method has been developed for the robust, high-throughput production of linear templates ready for cell-free protein synthesis. The construct made from the cDNA expresses a target protein region with N- and/or C-terminal tags. The procedure consists only of mixing, dilution, and PCR steps, and is free from cloning and purification steps. In the first step of the two-step PCR, a target region within the coding sequence is amplified using two gene-specific forward and reverse primers, which contain the linker sequences and the terminal sequences of the target region. The second PCR concatenates the first PCR product with the N- and C-terminal double-stranded fragments, which contain the linker sequences as well as the sequences for the tag(s) and the initiation and termination, respectively, for T7 transcription and ribosomal translation, and amplifies it with the universal primer. Proteins can be fused with a variety of tags, such as natural poly-histidine, glutathione-S-transferase, maltose-binding protein, and/or streptavidin-binding peptide. The two-step PCR method was successfully applied to 42 human target protein regions with various GC contents (38-77%). The robustness of the two-step PCR method against possible fluctuations of experimental conditions in practical use was explored. The second PCR product was obtained at 60-120 microg/ml, and was used without purification as a template at a concentration of 2-4 microg/ml in an Escherichia coli coupled transcription-translation system. This combination of two-step PCR with cell-free protein synthesis is suitable for the rapid production of proteins in milligram quantities for genome-scale studies.


Asunto(s)
Sistema Libre de Células , ADN/biosíntesis , Reacción en Cadena de la Polimerasa/métodos , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Secuencia de Bases , Células Cultivadas , Cartilla de ADN/química , Escherichia coli/fisiología , Humanos , Datos de Secuencia Molecular , Plásmidos , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA