Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
JMIR Med Inform ; 12: e49997, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250782

RESUMEN

BACKGROUND: A wealth of clinically relevant information is only obtainable within unstructured clinical narratives, leading to great interest in clinical natural language processing (NLP). While a multitude of approaches to NLP exist, current algorithm development approaches have limitations that can slow the development process. These limitations are exacerbated when the task is emergent, as is the case currently for NLP extraction of signs and symptoms of COVID-19 and postacute sequelae of SARS-CoV-2 infection (PASC). OBJECTIVE: This study aims to highlight the current limitations of existing NLP algorithm development approaches that are exacerbated by NLP tasks surrounding emergent clinical concepts and to illustrate our approach to addressing these issues through the use case of developing an NLP system for the signs and symptoms of COVID-19 and PASC. METHODS: We used 2 preexisting studies on PASC as a baseline to determine a set of concepts that should be extracted by NLP. This concept list was then used in conjunction with the Unified Medical Language System to autonomously generate an expanded lexicon to weakly annotate a training set, which was then reviewed by a human expert to generate a fine-tuned NLP algorithm. The annotations from a fully human-annotated test set were then compared with NLP results from the fine-tuned algorithm. The NLP algorithm was then deployed to 10 additional sites that were also running our NLP infrastructure. Of these 10 sites, 5 were used to conduct a federated evaluation of the NLP algorithm. RESULTS: An NLP algorithm consisting of 12,234 unique normalized text strings corresponding to 2366 unique concepts was developed to extract COVID-19 or PASC signs and symptoms. An unweighted mean dictionary coverage of 77.8% was found for the 5 sites. CONCLUSIONS: The evolutionary and time-critical nature of the PASC NLP task significantly complicates existing approaches to NLP algorithm development. In this work, we present a hybrid approach using the Open Health Natural Language Processing Toolkit aimed at addressing these needs with a dictionary-based weak labeling step that minimizes the need for additional expert annotation while still preserving the fine-tuning capabilities of expert involvement.

2.
PLOS Digit Health ; 3(4): e0000484, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38620037

RESUMEN

Few studies examining the patient outcomes of concurrent neurological manifestations during acute COVID-19 leveraged multinational cohorts of adults and children or distinguished between central and peripheral nervous system (CNS vs. PNS) involvement. Using a federated multinational network in which local clinicians and informatics experts curated the electronic health records data, we evaluated the risk of prolonged hospitalization and mortality in hospitalized COVID-19 patients from 21 healthcare systems across 7 countries. For adults, we used a federated learning approach whereby we ran Cox proportional hazard models locally at each healthcare system and performed a meta-analysis on the aggregated results to estimate the overall risk of adverse outcomes across our geographically diverse populations. For children, we reported descriptive statistics separately due to their low frequency of neurological involvement and poor outcomes. Among the 106,229 hospitalized COVID-19 patients (104,031 patients ≥18 years; 2,198 patients <18 years, January 2020-October 2021), 15,101 (14%) had at least one CNS diagnosis, while 2,788 (3%) had at least one PNS diagnosis. After controlling for demographics and pre-existing conditions, adults with CNS involvement had longer hospital stay (11 versus 6 days) and greater risk of (Hazard Ratio = 1.78) and faster time to death (12 versus 24 days) than patients with no neurological condition (NNC) during acute COVID-19 hospitalization. Adults with PNS involvement also had longer hospital stay but lower risk of mortality than the NNC group. Although children had a low frequency of neurological involvement during COVID-19 hospitalization, a substantially higher proportion of children with CNS involvement died compared to those with NNC (6% vs 1%). Overall, patients with concurrent CNS manifestation during acute COVID-19 hospitalization faced greater risks for adverse clinical outcomes than patients without any neurological diagnosis. Our global informatics framework using a federated approach (versus a centralized data collection approach) has utility for clinical discovery beyond COVID-19.

3.
Pediatrics ; 153(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38225804

RESUMEN

OBJECTIVES: Vaccination reduces the risk of acute coronavirus disease 2019 (COVID-19) in children, but it is less clear whether it protects against long COVID. We estimated vaccine effectiveness (VE) against long COVID in children aged 5 to 17 years. METHODS: This retrospective cohort study used data from 17 health systems in the RECOVER PCORnet electronic health record program for visits after vaccine availability. We examined both probable (symptom-based) and diagnosed long COVID after vaccination. RESULTS: The vaccination rate was 67% in the cohort of 1 037 936 children. The incidence of probable long COVID was 4.5% among patients with COVID-19, whereas diagnosed long COVID was 0.8%. Adjusted vaccine effectiveness within 12 months was 35.4% (95 CI 24.5-44.7) against probable long COVID and 41.7% (15.0-60.0) against diagnosed long COVID. VE was higher for adolescents (50.3% [36.6-61.0]) than children aged 5 to 11 (23.8% [4.9-39.0]). VE was higher at 6 months (61.4% [51.0-69.6]) but decreased to 10.6% (-26.8% to 37.0%) at 18-months. CONCLUSIONS: This large retrospective study shows moderate protective effect of severe acute respiratory coronavirus 2 vaccination against long COVID. The effect is stronger in adolescents, who have higher risk of long COVID, and wanes over time. Understanding VE mechanism against long COVID requires more study, including electronic health record sources and prospective data.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Adolescente , Niño , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Retrospectivos , Estudios Prospectivos , Eficacia de las Vacunas
4.
medRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37808803

RESUMEN

Objective: Vaccination reduces the risk of acute COVID-19 in children, but it is less clear whether it protects against long COVID. We estimated vaccine effectiveness (VE) against long COVID in children aged 5-17 years. Methods: This retrospective cohort study used data from 17 health systems in the RECOVER PCORnet electronic health record (EHR) Program for visits between vaccine availability, and October 29, 2022. Conditional logistic regression was used to estimate VE against long COVID with matching on age group (5-11, 12-17) and time period and adjustment for sex, ethnicity, health system, comorbidity burden, and pre-exposure health care utilization. We examined both probable (symptom-based) and diagnosed long COVID in the year following vaccination. Results: The vaccination rate was 56% in the cohort of 1,037,936 children. The incidence of probable long COVID was 4.5% among patients with COVID-19, while diagnosed long COVID was 0.7%. Adjusted vaccine effectiveness within 12 months was 35.4% (95 CI 24.5 - 44.5) against probable long COVID and 41.7% (15.0 - 60.0) against diagnosed long COVID. VE was higher for adolescents 50.3% [36.3 - 61.0]) than children aged 5-11 (23.8% [4.9 - 39.0]). VE was higher at 6 months (61.4% [51.0 - 69.6]) but decreased to 10.6% (-26.8 - 37.0%) at 18-months. Discussion: This large retrospective study shows a moderate protective effect of SARS-CoV-2 vaccination against long COVID. The effect is stronger in adolescents, who have higher risk of long COVID, and wanes over time. Understanding VE mechanism against long COVID requires more study, including EHR sources and prospective data. Article Summary: Vaccination against COVID-19 has a protective effect against long COVID in children and adolescents. The effect wanes over time but remains significant at 12 months. What's Known on This Subject: Vaccines reduce the risk and severity of COVID-19 in children. There is evidence for reduced long COVID risk in adults who are vaccinated, but little information about similar effects for children and adolescents, who have distinct forms of long COVID. What This Study Adds: Using electronic health records from US health systems, we examined large cohorts of vaccinated and unvaccinated patients <18 years old and show that vaccination against COVID-19 is associated with reduced risk of long COVID for at least 12 months. Contributors' Statement: Drs. Hanieh Razzaghi and Charles Bailey conceptualized and designed the study, supervised analyses, drafted the initial manuscript, and critically reviewed and revised the manuscript.Drs. Christopher Forrest and Yong Chen designed the study and critically reviewed and revised the manuscript.Ms. Kathryn Hirabayashi, Ms. Andrea Allen, and Dr. Qiong Wu conducted analyses, and critically reviewed and revised the manuscript.Drs. Suchitra Rao, H Timothy Bunnell, Elizabeth A. Chrischilles, Lindsay G. Cowell, Mollie R. Cummins, David A. Hanauer, Benjamin D. Horne, Carol R. Horowitz, Ravi Jhaveri, Susan Kim, Aaron Mishkin, Jennifer A. Muszynski, Susanna Nagie, Nathan M. Pajor, Anuradha Paranjape, Hayden T. Schwenk, Marion R. Sills, Yacob G. Tedla, David A. Williams, and Ms. Miranda Higginbotham critically reviewed and revised the manuscript.All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work. Authorship statement: Authorship has been determined according to ICMJE recommendations.

5.
EClinicalMedicine ; 64: 102212, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37745025

RESUMEN

Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection. It remains unclear how MIS-C phenotypes vary across SARS-CoV-2 variants. We aimed to investigate clinical characteristics and outcomes of MIS-C across SARS-CoV-2 eras. Methods: We performed a multicentre observational retrospective study including seven paediatric hospitals in four countries (France, Spain, U.K., and U.S.). All consecutive confirmed patients with MIS-C hospitalised between February 1st, 2020, and May 31st, 2022, were included. Electronic Health Records (EHR) data were used to calculate pooled risk differences (RD) and effect sizes (ES) at site level, using Alpha as reference. Meta-analysis was used to pool data across sites. Findings: Of 598 patients with MIS-C (61% male, 39% female; mean age 9.7 years [SD 4.5]), 383 (64%) were admitted in the Alpha era, 111 (19%) in the Delta era, and 104 (17%) in the Omicron era. Compared with patients admitted in the Alpha era, those admitted in the Delta era were younger (ES -1.18 years [95% CI -2.05, -0.32]), had fewer respiratory symptoms (RD -0.15 [95% CI -0.33, -0.04]), less frequent non-cardiogenic shock or systemic inflammatory response syndrome (SIRS) (RD -0.35 [95% CI -0.64, -0.07]), lower lymphocyte count (ES -0.16 × 109/uL [95% CI -0.30, -0.01]), lower C-reactive protein (ES -28.5 mg/L [95% CI -46.3, -10.7]), and lower troponin (ES -0.14 ng/mL [95% CI -0.26, -0.03]). Patients admitted in the Omicron versus Alpha eras were younger (ES -1.6 years [95% CI -2.5, -0.8]), had less frequent SIRS (RD -0.18 [95% CI -0.30, -0.05]), lower lymphocyte count (ES -0.39 × 109/uL [95% CI -0.52, -0.25]), lower troponin (ES -0.16 ng/mL [95% CI -0.30, -0.01]) and less frequently received anticoagulation therapy (RD -0.19 [95% CI -0.37, -0.04]). Length of hospitalization was shorter in the Delta versus Alpha eras (-1.3 days [95% CI -2.3, -0.4]). Interpretation: Our study suggested that MIS-C clinical phenotypes varied across SARS-CoV-2 eras, with patients in Delta and Omicron eras being younger and less sick. EHR data can be effectively leveraged to identify rare complications of pandemic diseases and their variation over time. Funding: None.

6.
J Biomed Inform ; 139: 104306, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738870

RESUMEN

BACKGROUND: In electronic health records, patterns of missing laboratory test results could capture patients' course of disease as well as ​​reflect clinician's concerns or worries for possible conditions. These patterns are often understudied and overlooked. This study aims to identify informative patterns of missingness among laboratory data collected across 15 healthcare system sites in three countries for COVID-19 inpatients. METHODS: We collected and analyzed demographic, diagnosis, and laboratory data for 69,939 patients with positive COVID-19 PCR tests across three countries from 1 January 2020 through 30 September 2021. We analyzed missing laboratory measurements across sites, missingness stratification by demographic variables, temporal trends of missingness, correlations between labs based on missingness indicators over time, and clustering of groups of labs based on their missingness/ordering pattern. RESULTS: With these analyses, we identified mapping issues faced in seven out of 15 sites. We also identified nuances in data collection and variable definition for the various sites. Temporal trend analyses may support the use of laboratory test result missingness patterns in identifying severe COVID-19 patients. Lastly, using missingness patterns, we determined relationships between various labs that reflect clinical behaviors. CONCLUSION: In this work, we use computational approaches to relate missingness patterns to hospital treatment capacity and highlight the heterogeneity of looking at COVID-19 over time and at multiple sites, where there might be different phases, policies, etc. Changes in missingness could suggest a change in a patient's condition, and patterns of missingness among laboratory measurements could potentially identify clinical outcomes. This allows sites to consider missing data as informative to analyses and help researchers identify which sites are better poised to study particular questions.


Asunto(s)
COVID-19 , Registros Electrónicos de Salud , Humanos , Recolección de Datos , Registros , Análisis por Conglomerados
7.
Mhealth ; 9: 5, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760786

RESUMEN

Background: The Roadmap mobile health (mHealth) app was developed to provide health-related quality of life (HRQOL) support for family caregivers of patients with cancer. Methods: Eligibility included: family caregivers (age ≥18 years) who self-reported as the primary caregiver of their pediatric patient with cancer; patients (age ≥5 years) who were receiving cancer care at the University of Michigan. Feasibility was calculated as the percentage of caregivers who logged into ONC Roadmap and engaged with it at least twice weekly for at least 50% of the 120-day study duration. Feasibility and acceptability was also assessed through a Feasibility and Acceptability questionnaire and the Mobile App Rating Scale to specifically assess app-quality. Exploratory analyses were also conducted to assess HRQOL self- or parent proxy assessments and physiological data capture. Results: Between September 2020-September 2021, 100 participants (or 50 caregiver-patient dyads) consented and enrolled in the ONC Roadmap study for 120-days. Feasibility of the study was met, wherein the majority of caregivers (N=32; 65%) logged into ONC Roadmap and engaged with it at least twice weekly for at least 50% of the study duration (defined a priori in the Protocol). The Feasibility and Acceptability questionnaire responses indicated that the study was feasible and acceptable with the majority (>50%) reporting Agree or Strongly Agree with positive Net Favorability [(Agree + Strongly Agree) - (Disagree + Totally Disagree)] in each of the domains (e.g., Fitbit use, ONC Roadmap use, completing longitudinal assessments, engaging in similar future study, study expectations). Improvements were seen across the majority of the mental HRQOL domains across all groups; even though underpowered, there were significant improvements in caregiver-specific aspects of HRQOL and anxiety and in depression and fatigue for children (ages 8-17 years), and a trend toward improvement in depression for children ages 8-17 years and in fatigue for adult patients. Conclusions: This study supports that mHealth technology may be a promising platform to provide HRQOL support for caregivers of pediatric patients with cancer. Importantly, the findings suggest that the study protocol was feasible, and participants were favorable to participate in future studies of this intervention alongside routine cancer care delivery.

8.
PLoS One ; 18(1): e0266985, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36598895

RESUMEN

PURPOSE: In young adults (18 to 49 years old), investigation of the acute respiratory distress syndrome (ARDS) after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been limited. We evaluated the risk factors and outcomes of ARDS following infection with SARS-CoV-2 in a young adult population. METHODS: A retrospective cohort study was conducted between January 1st, 2020 and February 28th, 2021 using patient-level electronic health records (EHR), across 241 United States hospitals and 43 European hospitals participating in the Consortium for Clinical Characterization of COVID-19 by EHR (4CE). To identify the risk factors associated with ARDS, we compared young patients with and without ARDS through a federated analysis. We further compared the outcomes between young and old patients with ARDS. RESULTS: Among the 75,377 hospitalized patients with positive SARS-CoV-2 PCR, 1001 young adults presented with ARDS (7.8% of young hospitalized adults). Their mortality rate at 90 days was 16.2% and they presented with a similar complication rate for infection than older adults with ARDS. Peptic ulcer disease, paralysis, obesity, congestive heart failure, valvular disease, diabetes, chronic pulmonary disease and liver disease were associated with a higher risk of ARDS. We described a high prevalence of obesity (53%), hypertension (38%- although not significantly associated with ARDS), and diabetes (32%). CONCLUSION: Trough an innovative method, a large international cohort study of young adults developing ARDS after SARS-CoV-2 infection has been gather. It demonstrated the poor outcomes of this population and associated risk factor.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Adulto Joven , Anciano , Adolescente , Adulto , Persona de Mediana Edad , COVID-19/complicaciones , COVID-19/epidemiología , SARS-CoV-2 , Estudios de Cohortes , Estudios Retrospectivos , Registros Electrónicos de Salud , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/complicaciones , Obesidad/complicaciones
9.
EClinicalMedicine ; 55: 101724, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36381999

RESUMEN

Background: While acute kidney injury (AKI) is a common complication in COVID-19, data on post-AKI kidney function recovery and the clinical factors associated with poor kidney function recovery is lacking. Methods: A retrospective multi-centre observational cohort study comprising 12,891 hospitalized patients aged 18 years or older with a diagnosis of SARS-CoV-2 infection confirmed by polymerase chain reaction from 1 January 2020 to 10 September 2020, and with at least one serum creatinine value 1-365 days prior to admission. Mortality and serum creatinine values were obtained up to 10 September 2021. Findings: Advanced age (HR 2.77, 95%CI 2.53-3.04, p < 0.0001), severe COVID-19 (HR 2.91, 95%CI 2.03-4.17, p < 0.0001), severe AKI (KDIGO stage 3: HR 4.22, 95%CI 3.55-5.00, p < 0.0001), and ischemic heart disease (HR 1.26, 95%CI 1.14-1.39, p < 0.0001) were associated with worse mortality outcomes. AKI severity (KDIGO stage 3: HR 0.41, 95%CI 0.37-0.46, p < 0.0001) was associated with worse kidney function recovery, whereas remdesivir use (HR 1.34, 95%CI 1.17-1.54, p < 0.0001) was associated with better kidney function recovery. In a subset of patients without chronic kidney disease, advanced age (HR 1.38, 95%CI 1.20-1.58, p < 0.0001), male sex (HR 1.67, 95%CI 1.45-1.93, p < 0.0001), severe AKI (KDIGO stage 3: HR 11.68, 95%CI 9.80-13.91, p < 0.0001), and hypertension (HR 1.22, 95%CI 1.10-1.36, p = 0.0002) were associated with post-AKI kidney function impairment. Furthermore, patients with COVID-19-associated AKI had significant and persistent elevations of baseline serum creatinine 125% or more at 180 days (RR 1.49, 95%CI 1.32-1.67) and 365 days (RR 1.54, 95%CI 1.21-1.96) compared to COVID-19 patients with no AKI. Interpretation: COVID-19-associated AKI was associated with higher mortality, and severe COVID-19-associated AKI was associated with worse long-term post-AKI kidney function recovery. Funding: Authors are supported by various funders, with full details stated in the acknowledgement section.

10.
JAMA Netw Open ; 5(12): e2246548, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36512353

RESUMEN

Importance: The COVID-19 pandemic has been associated with an increase in mental health diagnoses among adolescents, though the extent of the increase, particularly for severe cases requiring hospitalization, has not been well characterized. Large-scale federated informatics approaches provide the ability to efficiently and securely query health care data sets to assess and monitor hospitalization patterns for mental health conditions among adolescents. Objective: To estimate changes in the proportion of hospitalizations associated with mental health conditions among adolescents following onset of the COVID-19 pandemic. Design, Setting, and Participants: This retrospective, multisite cohort study of adolescents 11 to 17 years of age who were hospitalized with at least 1 mental health condition diagnosis between February 1, 2019, and April 30, 2021, used patient-level data from electronic health records of 8 children's hospitals in the US and France. Main Outcomes and Measures: Change in the monthly proportion of mental health condition-associated hospitalizations between the prepandemic (February 1, 2019, to March 31, 2020) and pandemic (April 1, 2020, to April 30, 2021) periods using interrupted time series analysis. Results: There were 9696 adolescents hospitalized with a mental health condition during the prepandemic period (5966 [61.5%] female) and 11 101 during the pandemic period (7603 [68.5%] female). The mean (SD) age in the prepandemic cohort was 14.6 (1.9) years and in the pandemic cohort, 14.7 (1.8) years. The most prevalent diagnoses during the pandemic were anxiety (6066 [57.4%]), depression (5065 [48.0%]), and suicidality or self-injury (4673 [44.2%]). There was an increase in the proportions of monthly hospitalizations during the pandemic for anxiety (0.55%; 95% CI, 0.26%-0.84%), depression (0.50%; 95% CI, 0.19%-0.79%), and suicidality or self-injury (0.38%; 95% CI, 0.08%-0.68%). There was an estimated 0.60% increase (95% CI, 0.31%-0.89%) overall in the monthly proportion of mental health-associated hospitalizations following onset of the pandemic compared with the prepandemic period. Conclusions and Relevance: In this cohort study, onset of the COVID-19 pandemic was associated with increased hospitalizations with mental health diagnoses among adolescents. These findings support the need for greater resources within children's hospitals to care for adolescents with mental health conditions during the pandemic and beyond.


Asunto(s)
COVID-19 , Pandemias , Niño , Adolescente , Femenino , Humanos , Masculino , COVID-19/epidemiología , Salud Mental , SARS-CoV-2 , Estudios de Cohortes , Estudios Retrospectivos , Hospitalización
11.
J Biomed Inform ; 134: 104176, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007785

RESUMEN

OBJECTIVE: For multi-center heterogeneous Real-World Data (RWD) with time-to-event outcomes and high-dimensional features, we propose the SurvMaximin algorithm to estimate Cox model feature coefficients for a target population by borrowing summary information from a set of health care centers without sharing patient-level information. MATERIALS AND METHODS: For each of the centers from which we want to borrow information to improve the prediction performance for the target population, a penalized Cox model is fitted to estimate feature coefficients for the center. Using estimated feature coefficients and the covariance matrix of the target population, we then obtain a SurvMaximin estimated set of feature coefficients for the target population. The target population can be an entire cohort comprised of all centers, corresponding to federated learning, or a single center, corresponding to transfer learning. RESULTS: Simulation studies and a real-world international electronic health records application study, with 15 participating health care centers across three countries (France, Germany, and the U.S.), show that the proposed SurvMaximin algorithm achieves comparable or higher accuracy compared with the estimator using only the information of the target site and other existing methods. The SurvMaximin estimator is robust to variations in sample sizes and estimated feature coefficients between centers, which amounts to significantly improved estimates for target sites with fewer observations. CONCLUSIONS: The SurvMaximin method is well suited for both federated and transfer learning in the high-dimensional survival analysis setting. SurvMaximin only requires a one-time summary information exchange from participating centers. Estimated regression vectors can be very heterogeneous. SurvMaximin provides robust Cox feature coefficient estimates without outcome information in the target population and is privacy-preserving.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Humanos , Privacidad , Modelos de Riesgos Proporcionales , Análisis de Supervivencia
12.
BMJ Open ; 12(6): e057725, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35738646

RESUMEN

OBJECTIVE: To assess changes in international mortality rates and laboratory recovery rates during hospitalisation for patients hospitalised with SARS-CoV-2 between the first wave (1 March to 30 June 2020) and the second wave (1 July 2020 to 31 January 2021) of the COVID-19 pandemic. DESIGN, SETTING AND PARTICIPANTS: This is a retrospective cohort study of 83 178 hospitalised patients admitted between 7 days before or 14 days after PCR-confirmed SARS-CoV-2 infection within the Consortium for Clinical Characterization of COVID-19 by Electronic Health Record, an international multihealthcare system collaborative of 288 hospitals in the USA and Europe. The laboratory recovery rates and mortality rates over time were compared between the two waves of the pandemic. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was all-cause mortality rate within 28 days after hospitalisation stratified by predicted low, medium and high mortality risk at baseline. The secondary outcome was the average rate of change in laboratory values during the first week of hospitalisation. RESULTS: Baseline Charlson Comorbidity Index and laboratory values at admission were not significantly different between the first and second waves. The improvement in laboratory values over time was faster in the second wave compared with the first. The average C reactive protein rate of change was -4.72 mg/dL vs -4.14 mg/dL per day (p=0.05). The mortality rates within each risk category significantly decreased over time, with the most substantial decrease in the high-risk group (42.3% in March-April 2020 vs 30.8% in November 2020 to January 2021, p<0.001) and a moderate decrease in the intermediate-risk group (21.5% in March-April 2020 vs 14.3% in November 2020 to January 2021, p<0.001). CONCLUSIONS: Admission profiles of patients hospitalised with SARS-CoV-2 infection did not differ greatly between the first and second waves of the pandemic, but there were notable differences in laboratory improvement rates during hospitalisation. Mortality risks among patients with similar risk profiles decreased over the course of the pandemic. The improvement in laboratory values and mortality risk was consistent across multiple countries.


Asunto(s)
COVID-19 , Pandemias , Hospitalización , Humanos , Estudios Retrospectivos , SARS-CoV-2
13.
NPJ Digit Med ; 5(1): 81, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768548

RESUMEN

The risk profiles of post-acute sequelae of COVID-19 (PASC) have not been well characterized in multi-national settings with appropriate controls. We leveraged electronic health record (EHR) data from 277 international hospitals representing 414,602 patients with COVID-19, 2.3 million control patients without COVID-19 in the inpatient and outpatient settings, and over 221 million diagnosis codes to systematically identify new-onset conditions enriched among patients with COVID-19 during the post-acute period. Compared to inpatient controls, inpatient COVID-19 cases were at significant risk for angina pectoris (RR 1.30, 95% CI 1.09-1.55), heart failure (RR 1.22, 95% CI 1.10-1.35), cognitive dysfunctions (RR 1.18, 95% CI 1.07-1.31), and fatigue (RR 1.18, 95% CI 1.07-1.30). Relative to outpatient controls, outpatient COVID-19 cases were at risk for pulmonary embolism (RR 2.10, 95% CI 1.58-2.76), venous embolism (RR 1.34, 95% CI 1.17-1.54), atrial fibrillation (RR 1.30, 95% CI 1.13-1.50), type 2 diabetes (RR 1.26, 95% CI 1.16-1.36) and vitamin D deficiency (RR 1.19, 95% CI 1.09-1.30). Outpatient COVID-19 cases were also at risk for loss of smell and taste (RR 2.42, 95% CI 1.90-3.06), inflammatory neuropathy (RR 1.66, 95% CI 1.21-2.27), and cognitive dysfunction (RR 1.18, 95% CI 1.04-1.33). The incidence of post-acute cardiovascular and pulmonary conditions decreased across time among inpatient cases while the incidence of cardiovascular, digestive, and metabolic conditions increased among outpatient cases. Our study, based on a federated international network, systematically identified robust conditions associated with PASC compared to control groups, underscoring the multifaceted cardiovascular and neurological phenotype profiles of PASC.

14.
NPJ Digit Med ; 5(1): 74, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697747

RESUMEN

Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach.

15.
AMIA Annu Symp Proc ; 2022: 932-941, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37128440

RESUMEN

Free text forms of clinical documentation stored in electronic health records contain a trove of data for researchers and clinicians alike. However, often these data are challenging to use and not easily accessible. EMERSE, a clinical documentation search and data abstraction tool developed by the University of Michigan, helps users in the task of searching through free text notes in clinical documentation. This study evaluates the usability and user experience of the EMERSE system, and draws inferences for the design of such systems. The study was conducted in 3 phases. In Phase 1, interviews with site administrators investigated factors that facilitate or hinder the implementation and adoption of EMERSE. Phase 2 employed semi-structured interviews to understand the uses, benefits, and limitations of the system from the perspective of experienced users. In Phase 3, system-naive users performed a set of basic workflow tasks, then completed post-activity questions and surveys to evaluate the intuitiveness and usability of the system. Participants rated the system exceptionally high on usability, user interface satisfaction, and perceived usefulness. Feedback also indicated that improvements could be made in visual contrast, affordances, and scope of notes indexed. These results indicate that tools such as EMERSE should be highly intuitive, attractive, and moderately customizable. This paper discusses some aspects of what may contribute to a system having such characteristics.


Asunto(s)
Registros Electrónicos de Salud , Motor de Búsqueda , Humanos , Encuestas y Cuestionarios , Documentación , Flujo de Trabajo
17.
J Clin Invest ; 131(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34710063

RESUMEN

Acute COVID-19, caused by SARS-CoV-2, is characterized by diverse clinical presentations, ranging from asymptomatic infection to fatal respiratory failure, and often associated with varied longer-term sequelae. Over the past 18 months, it has become apparent that inappropriate immune responses contribute to the pathogenesis of severe COVID-19. Researchers working at the intersection of COVID-19 and autoimmunity recently gathered at an American Autoimmune Related Diseases Association Noel R. Rose Colloquium to address the current state of knowledge regarding two important questions: Does established autoimmunity predispose to severe COVID-19? And, at the same time, can SARS-CoV-2 infection trigger de novo autoimmunity? Indeed, work to date has demonstrated that 10% to 15% of patients with critical COVID-19 pneumonia exhibit autoantibodies against type I interferons, suggesting that preexisting autoimmunity underlies severe disease in some patients. Other studies have identified functional autoantibodies following infection with SARS-CoV-2, such as those that promote thrombosis or antagonize cytokine signaling. These autoantibodies may arise from a predominantly extrafollicular B cell response that is more prone to generating autoantibody-secreting B cells. This Review highlights the current understanding, evolving concepts, and unanswered questions provided by this unique opportunity to determine mechanisms by which a viral infection can be exacerbated by, and even trigger, autoimmunity. The potential role of autoimmunity in post-acute sequelae of COVID-19 is also discussed.


Asunto(s)
Autoanticuerpos/química , Autoinmunidad/inmunología , COVID-19/inmunología , COVID-19/fisiopatología , Transducción de Señal , Animales , Enfermedades Autoinmunes , Linfocitos B/citología , Citocinas/metabolismo , Progresión de la Enfermedad , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Inflamación , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Activación de Macrófagos , Masculino , Ratones , Fosfolípidos/metabolismo , SARS-CoV-2
18.
J Med Internet Res ; 23(10): e31400, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34533459

RESUMEN

BACKGROUND: Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic. OBJECTIVE: In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries. We compared hospitalization rates, severe COVID-19 risk, and mean laboratory values between patients hospitalized during the first and second waves of the pandemic. METHODS: Using a federated approach, each participating health care system extracted patient-level clinical data on their first and second wave cohorts and submitted aggregated data to the central site. Data quality control steps were adopted at the central site to correct for implausible values and harmonize units. Statistical analyses were performed by computing individual health care system effect sizes and synthesizing these using random effect meta-analyses to account for heterogeneity. We focused the laboratory analysis on C-reactive protein (CRP), ferritin, fibrinogen, procalcitonin, D-dimer, and creatinine based on their reported associations with severe COVID-19. RESULTS: Data were available for 79,613 patients, of which 32,467 were hospitalized in the first wave and 47,146 in the second wave. The prevalence of male patients and patients aged 50 to 69 years decreased significantly between the first and second waves. Patients hospitalized in the second wave had a 9.9% reduction in the risk of severe COVID-19 compared to patients hospitalized in the first wave (95% CI 8.5%-11.3%). Demographic subgroup analyses indicated that patients aged 26 to 49 years and 50 to 69 years; male and female patients; and black patients had significantly lower risk for severe disease in the second wave than in the first wave. At admission, the mean values of CRP were significantly lower in the second wave than in the first wave. On the seventh hospital day, the mean values of CRP, ferritin, fibrinogen, and procalcitonin were significantly lower in the second wave than in the first wave. In general, countries exhibited variable changes in laboratory testing rates from the first to the second wave. At admission, there was a significantly higher testing rate for D-dimer in France, Germany, and Spain. CONCLUSIONS: Patients hospitalized in the second wave were at significantly lower risk for severe COVID-19. This corresponded to mean laboratory values in the second wave that were more likely to be in typical physiological ranges on the seventh hospital day compared to the first wave. Our federated approach demonstrated the feasibility and power of harmonizing heterogeneous EHR data from multiple international health care systems to rapidly conduct large-scale studies to characterize how COVID-19 clinical trajectories evolve.


Asunto(s)
COVID-19 , Pandemias , Adulto , Anciano , Femenino , Hospitalización , Hospitales , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , SARS-CoV-2
19.
JAMA Netw Open ; 4(6): e2112596, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34115127

RESUMEN

Importance: Additional sources of pediatric epidemiological and clinical data are needed to efficiently study COVID-19 in children and youth and inform infection prevention and clinical treatment of pediatric patients. Objective: To describe international hospitalization trends and key epidemiological and clinical features of children and youth with COVID-19. Design, Setting, and Participants: This retrospective cohort study included pediatric patients hospitalized between February 2 and October 10, 2020. Patient-level electronic health record (EHR) data were collected across 27 hospitals in France, Germany, Spain, Singapore, the UK, and the US. Patients younger than 21 years who tested positive for COVID-19 and were hospitalized at an institution participating in the Consortium for Clinical Characterization of COVID-19 by EHR were included in the study. Main Outcomes and Measures: Patient characteristics, clinical features, and medication use. Results: There were 347 males (52%; 95% CI, 48.5-55.3) and 324 females (48%; 95% CI, 44.4-51.3) in this study's cohort. There was a bimodal age distribution, with the greatest proportion of patients in the 0- to 2-year (199 patients [30%]) and 12- to 17-year (170 patients [25%]) age range. Trends in hospitalizations for 671 children and youth found discrete surges with variable timing across 6 countries. Data from this cohort mirrored national-level pediatric hospitalization trends for most countries with available data, with peaks in hospitalizations during the initial spring surge occurring within 23 days in the national-level and 4CE data. A total of 27 364 laboratory values for 16 laboratory tests were analyzed, with mean values indicating elevations in markers of inflammation (C-reactive protein, 83 mg/L; 95% CI, 53-112 mg/L; ferritin, 417 ng/mL; 95% CI, 228-607 ng/mL; and procalcitonin, 1.45 ng/mL; 95% CI, 0.13-2.77 ng/mL). Abnormalities in coagulation were also evident (D-dimer, 0.78 ug/mL; 95% CI, 0.35-1.21 ug/mL; and fibrinogen, 477 mg/dL; 95% CI, 385-569 mg/dL). Cardiac troponin, when checked (n = 59), was elevated (0.032 ng/mL; 95% CI, 0.000-0.080 ng/mL). Common complications included cardiac arrhythmias (15.0%; 95% CI, 8.1%-21.7%), viral pneumonia (13.3%; 95% CI, 6.5%-20.1%), and respiratory failure (10.5%; 95% CI, 5.8%-15.3%). Few children were treated with COVID-19-directed medications. Conclusions and Relevance: This study of EHRs of children and youth hospitalized for COVID-19 in 6 countries demonstrated variability in hospitalization trends across countries and identified common complications and laboratory abnormalities in children and youth with COVID-19 infection. Large-scale informatics-based approaches to integrate and analyze data across health care systems complement methods of disease surveillance and advance understanding of epidemiological and clinical features associated with COVID-19 in children and youth.


Asunto(s)
COVID-19/epidemiología , Registros Electrónicos de Salud/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Pandemias , SARS-CoV-2 , Adolescente , Niño , Preescolar , Femenino , Salud Global , Humanos , Lactante , Recién Nacido , Masculino , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...