Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genetics ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861403

RESUMEN

Spatially continuous patterns of genetic differentiation, which are common in nature, are often poorly described by existing population genetic theory or methods that assume either panmixia or discrete, clearly definable populations. There is therefore a need for statistical approaches in population genetics that can accommodate continuous geographic structure, and that ideally use georeferenced individuals as the unit of analysis, rather than populations or subpopulations. In addition, researchers are often interested in describing the diversity of a population distributed continuously in space; this diversity is intimately linked to both the dispersal potential and the population density of the organism. A statistical model that leverages information from patterns of isolation-by-distance to jointly infer parameters that control local demography (such as Wright's neighborhood size), and the long-term effective size (Ne) of a population would be useful. Here, we introduce such a model that uses individual-level pairwise genetic and geographic distances to infer Wright's neighborhood size and long-term Ne. We demonstrate the utility of our model by applying it to complex, forward-time demographic simulations as well as an empirical dataset of the two-form bumblebee (Bombus bifarius). The model performed well on simulated data relative to alternative approaches and produced reasonable empirical results given the natural history of bumblebees. The resulting inferences provide important insights into the population genetic dynamics of spatially structured populations.

2.
J Math Biol ; 88(5): 54, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568223

RESUMEN

Fisher's fundamental theorem of natural selection has haunted theoretical population genetic literature since it was proposed in 1930, leading to numerous interpretations. Most of the confusion stemmed from Fisher's own obscure presentation. By the 1970s, a clearer view of Fisher's theorem had been achieved and it was found that, regardless of its utility or significance, it represents a general theorem of evolutionary biology. Basener and Sanford (J Math Biol 76:1589-1622, 2018) writing in JOMB, however, paint a different picture of the fundamental theorem as one hindered by its assumptions and incomplete due to its failure to explicitly incorporate mutational effects. They argue that Fisher saw his theorem as a "mathematical proof of Darwinian evolution". In this reply, we show that, contrary to Basener and Sanford, Fisher's theorem is a general theorem that applies to any evolving population, and that, far from their assertion that it needed to be expanded, the theorem already implicitly incorporates ancestor-descendant variation. We also show that their numerical simulations produce unrealistic results. Lastly, we argue that Basener and Sanford's motivations were in undermining not merely Fisher's theorem, but the concept of universal common descent itself.


Asunto(s)
Páncreas , Mutación
3.
bioRxiv ; 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36945591

RESUMEN

Spatially continuous patterns of genetic differentiation, which are common in nature, are often poorly described by existing population genetic theory or methods that assume panmixia or discrete, clearly definable populations. There is therefore a need for statistical approaches in population genetics that can accommodate continuous geographic structure, and that ideally use georeferenced individuals as the unit of analysis, rather than populations or subpopulations. In addition, researchers are often interested describing the diversity of a population distributed continuously in space, and this diversity is intimately linked to the dispersal potential of the organism. A statistical model that leverages information from patterns of isolation-by-distance to jointly infer parameters that control local demography (such as Wright's neighborhood size), and the long-term effective size (Ne) of a population would be useful. Here, we introduce such a model that uses individual-level pairwise genetic and geographic distances to infer Wright's neighborhood size and long-term Ne. We demonstrate the utility of our model by applying it to complex, forward-time demographic simulations as well as an empirical dataset of the Red Sea clownfish (Amphiprion bicinctus). The model performed well on simulated data relative to alternative approaches and produced reasonable empirical results given the natural history of clownfish. The resulting inferences provide important insights into the population genetic dynamics of spatially structure populations.

4.
Sci Rep ; 13(1): 1691, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717685

RESUMEN

Species range contractions both contribute to, and result from, biological annihilation, yet do not receive the same attention as extinctions. Range contractions can lead to marked impacts on populations but are usually characterized only by reduction in extent of range. For effective conservation, it is critical to recognize that not all range contractions are the same. We propose three distinct patterns of range contraction: shrinkage, amputation, and fragmentation. We tested the impact of these patterns on populations of a generalist species using forward-time simulations. All three patterns caused 86-88% reduction in population abundance and significantly increased average relatedness, with differing patterns in declines of nucleotide diversity relative to the contraction pattern. The fragmentation pattern resulted in the strongest effects on post-contraction genetic diversity and structure. Defining and quantifying range contraction patterns and their consequences for Earth's biodiversity would provide useful and necessary information to combat biological annihilation.


Asunto(s)
Biodiversidad , Ecosistema , Demografía , Extinción Biológica , Variación Genética , Conservación de los Recursos Naturales
5.
Mol Phylogenet Evol ; 173: 107505, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577296

RESUMEN

The tendency to discretize biology permeates taxonomy and systematics, leading to models that simplify the often continuous nature of populations. Even when the assumption of panmixia is relaxed, most models still assume some degree of discrete structure. The multispecies coalescent has emerged as a powerful model in phylogenetics, but in its common implementation is entirely space-independent - what we call the "missing z-axis". In this article, we review the many lines of evidence for how continuous spatial structure can impact phylogenetic inference. We illustrate and expand on these by using complex continuous-space demographic models that include distinct modes of speciation. We find that the impact of spatial structure permeates all aspects of phylogenetic inference, including gene tree stoichiometry, topological and branch-length variance, network estimation, and species delimitation. We conclude by utilizing our results to suggest how researchers can identify spatial structure in phylogenetic datasets.


Asunto(s)
Modelos Genéticos , Filogenia
6.
Ecol Evol ; 11(16): 11425-11439, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34429930

RESUMEN

Ecosystem engineers alter, and can be influenced in turn by, the ecosystems they live in. Woodpeckers choose foraging and nesting sites based, in part, on food availability. Once abandoned, these cavities, particularly within areas of high forage, may be crucial to secondary cavity-nesting birds otherwise limited by cavities formed through decay. Our study examined factors that influence the nesting success of primary cavity nesters and the subsequent impact on secondary cavity-nesting birds. Using 5 years of point count data, we monitored the outcomes of cavity-nesting birds in South Texas. We used logistic-exposure models to predict daily survival rates based on cavity metrics and used woodpecker foraging trends and insect surveys to determine if nesting where woodpeckers actively forage benefits secondary cavity-nesting birds. Both woodpeckers and secondary cavity nesters shared predictors of daily survival; nests were more successful in cavities with small openings in minimally decayed trees. All secondary cavity nesters had higher probabilities of success when nesting in an abandoned woodpecker cavity, opposed to ones formed by decay. Woodpeckers tended to forage in areas with higher-than-average levels of the insect orders Coleoptera, Hymenoptera, and Orthoptera, and secondary cavity nesters had higher rates of success when nesting in these areas. Our results suggest abandoned woodpecker cavities may be constructed in a way that directly benefit secondary cavity nesters. Additionally, we suggest an interplay between these ecosystem engineers, food availability, and secondary cavity nesters: Woodpeckers engineer superior nesting cavities in areas where food is more abundant, and the resultant cavities in areas of high forage may benefit local secondary cavity nesters. Our findings indicate that there is still much to be explored in the role of ecosystem engineers, and how they influence local communities on multiple trophic levels.

7.
Evolution ; 75(6): 1244-1255, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33999415

RESUMEN

The Modern Synthesis (or "Neo-Darwinism"), which arose out of the reconciliation of Darwin's theory of natural selection and Mendel's research on genetics, remains the foundation of evolutionary theory. However, since its inception, it has been a lightning rod for criticism, which has ranged from minor quibbles to complete dismissal. Among the most famous of the critics was Stephen Jay Gould, who, in 1980, proclaimed that the Modern Synthesis was "effectively dead." Gould and others claimed that the action of natural selection on random mutations was insufficient on its own to explain patterns of macroevolutionary diversity and divergence, and that new processes were required to explain findings from the fossil record. In 1982, Charlesworth, Lande, and Slatkin published a response to this critique in Evolution, in which they argued that Neo-Darwinism was indeed sufficient to explain macroevolutionary patterns. In this Perspective for the 75th Anniversary of the Society for the Study of Evolution, we review Charlesworth et al. in its historical context and provide modern support for their arguments. We emphasize the importance of microevolutionary processes in the study of macroevolutionary patterns. Ultimately, we conclude that punctuated equilibrium did not represent a major revolution in evolutionary biology - although debate on this point stimulated significant research and furthered the field - and that Neo-Darwinism is alive and well.


Asunto(s)
Evolución Biológica , Biología/historia , Selección Genética , Historia del Siglo XX , Modelos Biológicos , Filogenia
8.
J Hered ; 111(6): 573-582, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33031560

RESUMEN

Isolation-by-distance is a widespread pattern in nature that describes the reduction of genetic correlation between subpopulations with increased geographic distance. In the population ancestral to modern sister species, this pattern may hypothetically inflate population divergence time estimation due to allele frequency differences in subpopulations at the ends of the ancestral population. In this study, we analyze the relationship between the time to the most recent common ancestor and the population divergence time when the ancestral population model is a linear stepping-stone. Using coalescent simulations, we compare the coalescent time to the population divergence time for various ratios of the divergence time over the population size. Next, we simulate whole genomes to obtain single nucleotide polymorphisms (SNPs), and use the Bayesian coalescent program SNAPP to estimate divergence times. We find that as the rate of migration between neighboring demes decreases, the coalescent time becomes significantly greater than the population divergence time when sampled from end demes. Divergence-time overestimation in SNAPP becomes severe when the divergence-to-population size ratio < 10 and migration is low. Finally, we demonstrate the impact of ancestral isolation-by-distance on divergence-time estimation using an empirical dataset of squamates (Tropidurus) endemic to Brazil. We conclude that studies estimating divergence times should be cognizant of the potential ancestral population structure in an explicitly spatial context or risk dramatically overestimating the timing of population splits.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma/genética , Iguanas/genética , Animales , Teorema de Bayes , Simulación por Computador , Frecuencia de los Genes , Especiación Genética , Genética de Población , Modelos Estadísticos , Filogenia , Densidad de Población
9.
Zootaxa ; 4459(1): 101-127, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30314133

RESUMEN

Undescribed species of the genus Haustorius Müller, 1775 have long been known to exist in the Gulf of Mexico. These sand-burrowing amphipods are abundant intertidal members of fine sand beaches. Two new species are here described, Haustorius galvezi sp. nov. and Haustorius allardi sp. nov. The range of H. jayneae is extended to Carrabelle Beach, FL. A review of the genera Haustorius and Lepidactylus is included, as well as notes on their ecology and biogeography. Additionally, a full key to all known Haustoriidae of the Gulf of Mexico is presented.


Asunto(s)
Anfípodos , Animales , Ecología , Golfo de México
10.
Zookeys ; (706): 1-15, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29118617

RESUMEN

Diadumene lineata (Actiniaria: Diadumenidae) is a prolific invader of coastal environments around the world. First described from Asia, this sea anemone has only been reported once from the western Gulf of Mexico at Port Aransas, Texas. No subsequent sampling has located this species at this locality. The first record of the reappearance of D. lineata on the Texas coast from three locations in the Galveston Bay area is provided, and its geographic distribution and taxonomic history reviewed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...