Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35563078

RESUMEN

Oncostatin M (OSM) is an immune cell-derived cytokine that is upregulated in adipose tissue in obesity. Upon binding its receptor (OSMR), OSM induces the phosphorylation of the p66 subunit of Src homology 2 domain-containing transforming protein 1 (SHC1), called p66Shc, and activates the extracellular signal-related kinase (ERK) pathway. Mice with adipocyte-specific OSMR deletion (OsmrFKO) are insulin resistant and exhibit adipose tissue inflammation, suggesting that intact adipocyte OSM-OSMR signaling is necessary for maintaining adipose tissue health. How OSM affects specific adipocyte functions is still unclear. Here, we examined the effects of OSM on adipocyte lipolysis. We treated 3T3-L1 adipocytes with OSM, insulin, and/or inhibitors of SHC1 and ERK and measured glycerol release. We also measured phosphorylation of p66Shc, ERK, and insulin receptor substrate-1 (IRS1) and the expression of lipolysis-associated genes in OSM-exposed 3T3-L1 adipocytes and primary adipocytes from control and OsmrFKO mice. We found that OSM induces adipocyte lipolysis via a p66Shc-ERK pathway and inhibits the suppression of lipolysis by insulin. Further, OSM induces phosphorylation of inhibitory IRS1 residues. We conclude that OSM is a stimulator of lipolysis and inhibits adipocyte insulin response. Future studies will determine how these roles of OSM affect adipose tissue function in health and disease.


Asunto(s)
Insulina , Lipólisis , Oncostatina M , Células 3T3-L1/metabolismo , Adipocitos/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Lipólisis/efectos de los fármacos , Ratones , Oncostatina M/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 812802, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464049

RESUMEN

STATs (Signal Transducers and Activators of Transcription) 5A and 5B are induced during adipocyte differentiation and are primarily activated by growth hormone (GH) and prolactin in fat cells. Previous studies in mice lacking adipocyte GH receptor or STAT5 support their roles in lipolysis-mediated reduction of adipose tissue mass. Male and female mice harboring adipocyte-specific deletion of both STAT5 genes (STAT5AKO) exhibit increased subcutaneous or inguinal adipose tissue mass, but no changes in visceral or gonadal fat mass. Both depots display substantial increases in adipocyte size with no changes in lipolysis in adipose tissue explants. RNA sequencing analysis of subcutaneous adipose tissue and indirect calorimetry experiments reveal sex-dependent differences in adipose gene expression and whole-body energy expenditure, respectively, resulting from the loss of adipocyte STAT5.


Asunto(s)
Adiposidad , Lipólisis , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Adiposidad/genética , Animales , Femenino , Lipólisis/genética , Masculino , Ratones , Obesidad/genética , Obesidad/metabolismo , Factor de Transcripción STAT5/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-32343613

RESUMEN

To resolve both the systems level and molecular mechanisms responsible for exercise induced improvements in glucose tolerance, we sought to test the effect of voluntary wheel running exercise on postprandial glucose dynamics. We utilized a stable isotope labeled oral glucose tolerance test (SI-OGTT) incorporating complimentary deuterium glucose tracers at 1:1 ratio (2-2H-glucose and 6-6 2H-glucose; 2g/kg lean body mass) to distinguish between endogenous glucose production (EGP) and whole-body glucose disposal. SI-OGTT was performed in C57BL/6J mice after 8 weeks on a high fat diet (45% fat). Mice were then randomized to either a wheel running cage (n=13, HFD Ex) or normal cage (n=13, HFD Sed) while maintaining the HFD for 4 weeks prior to performing a SI-OGTT. HFD Ex mice demonstrated improvements in whole blood glucose total AUC that was attributed primarily to a reduction in EGP AUC. Serum insulin levels measured at 0 and 15-minutes post glucose gavage were significantly elevated in the HFD Sed mice, whereas HFD Ex mice demonstrated the expected reduction in insulin at both time points. Overall, exercise improved hepatic insulin sensitivity by reducing postprandial EGP, but also increased whole-body glucose disposal. Finally, these results demonstrate the benefits of exercise on hepatic insulin sensitivity by combining a more physiological route of glucose administration (oral glucose) with the resolution of stable isotope tracers. These novel observations clearly demonstrate that SI-OGTT is a sensitive and cost-effective method to measure exercise adaptations in obese mice with as little as 2 µl of tail blood.

4.
Biology (Basel) ; 8(1)2019 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-30909581

RESUMEN

Adipose tissue homeostasis depends on interactions between stromal cells, adipocytes, and the cytokines and chemokines they produce. The gp130 cytokine, oncostatin M (OSM), plays a role in adipose tissue homeostasis. Mice, lacking the OSM receptor (OSMR) in adipocytes (OsmrFKO mice), exhibit derangements in adipose tissue, insulin sensitivity, and immune cell balance. Here, we describe a possible role for the chemokine stromal-derived factor 1 (SDF-1) in these alterations. We treated 3T3-L1 adipocytes with OSM and observed a suppression of SDF-1 gene expression and protein secretion, an effect which was partially blunted by OSMR knockdown. However, OsmrFKO mice also exhibited decreased SDF-1 gene and protein expression in adipose tissue. These contrasting results suggest that the loss of adipocyte OSM⁻OSMR signaling in vivo may be indirectly affecting adipokine production and secretion by altering OSM target genes to ultimately decrease SDF-1 expression in the OsmrFKO mouse. We conclude that adipocyte OSM⁻OSMR signaling plays a role in adipose tissue SDF-1 production and may mitigate its effects on adipose tissue homeostasis.

5.
Obesity (Silver Spring) ; 26(9): 1439-1447, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30226002

RESUMEN

OBJECTIVE: This study examined the phenotypic effects of adipocyte-specific oncostatin M receptor (OSMR) loss in chow-fed mice. METHODS: Chow-fed adipocyte-specific OSMR knockout (FKO) mice and littermate OSMRfl/fl controls were studied. Tissue weights, insulin sensitivity, adipokine production, and stromal cell immunophenotypes were assessed in epididymal fat (eWAT); serum adipokine production was also assessed. In vitro, adipocytes were treated with oncostatin M, and adipokine gene expression was assessed. RESULTS: Body weights, fasting blood glucose levels, and eWAT weights did not differ between genotypes. However, the eWAT of OSMRFKO mice was modestly less responsive to insulin stimulation than that of OSMRfl/fl mice. Notably, significant increases in adipokines, including C-reactive protein, lipocalin 2, intercellular adhesion molecule-1, and insulinlike growth factor binding protein 6, were observed in the eWAT of OSMRFKO mice. In addition, significant increases in fetuin A and intercellular adhesion molecule-1 were detected in OSMRFKO serum. Flow cytometry revealed a significant increase in leukocyte number and modest, but not statistically significant, increases in B cells and T cells in the eWAT of OSMRFKO mice. CONCLUSIONS: The chow-fed OSMRFKO mice exhibited adipose tissue dysfunction and increased proinflammatory adipokine production. These results suggest that intact adipocyte oncostatin M-OSMR signaling is necessary for adipose tissue immune cell homeostasis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/fisiopatología , Oncostatina M/metabolismo , Animales , Masculino , Ratones , Ratones Noqueados
6.
J Biol Chem ; 292(48): 19733-19742, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28982698

RESUMEN

STAT5 proteins play a role in adipocyte development and function, but their specific functions are largely unknown. To this end, we used an unbiased MS-based approach to identify novel STAT5-interacting proteins. We observed that STAT5A bound the E1ß and E2 subunits of the pyruvate dehydrogenase complex (PDC). Whereas STAT5A typically localizes to the cytosol or nucleus, PDC normally resides within the mitochondrial matrix where it converts pyruvate to acetyl-CoA. We employed affinity purification and immunoblotting to validate the interaction between STAT5A and PDC subunits in murine and human cultured adipocytes, as well as in adipose tissue. We found that multiple PDC subunits interact with hormone-activated STAT5A in a dose- and time-dependent manner that coincides with tyrosine phosphorylation of STAT5. Using subcellular fractionation and immunofluorescence microscopy, we observed that PDC-E2 is present within the adipocyte nucleus where it associates with STAT5A. Because STAT5A is a transcription factor, we used chromatin immunoprecipitation (ChIP) to assess PDC's ability to interact with STAT5 DNA-binding sites. These analyses revealed that PDC-E2 is bound to a STAT5-binding site in the promoter of the STAT5 target gene cytokine-inducible SH2-containing protein (cish). We have demonstrated a compelling interaction between STAT5A and PDC subunits in adipocytes under physiological conditions. There is previous evidence that PDC localizes to cancer cell nuclei where it plays a role in histone acetylation. On the basis of our ChIP data and these previous findings, we hypothesize that PDC may modulate STAT5's ability to regulate gene expression by controlling histone or STAT5 acetylation.


Asunto(s)
Tejido Adiposo/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Factor de Transcripción STAT5/metabolismo , Células 3T3-L1 , Tejido Adiposo/citología , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica
7.
Compr Physiol ; 7(2): 635-674, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28333384

RESUMEN

Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.


Asunto(s)
Adipogénesis/fisiología , Transcripción Genética/fisiología , Adipocitos/citología , Adipocitos/fisiología , Adipogénesis/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Factores de Transcripción de Tipo Kruppel/fisiología , Enfermedades Metabólicas/fisiopatología , Modelos Biológicos , PPAR gamma/fisiología , Fosforilación/fisiología , Receptores de Esteroides/fisiología , Factores de Transcripción STAT/fisiología , Serina/metabolismo , Sumoilación/fisiología , Ubiquitinación/fisiología
8.
J Biol Chem ; 291(33): 17066-76, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27325693

RESUMEN

Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor ß (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Resistencia a la Insulina , Obesidad/metabolismo , Oncostatina M/metabolismo , Paniculitis/metabolismo , Transducción de Señal , Células 3T3-L1 , Adipocitos/patología , Tejido Adiposo/patología , Animales , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Antígenos CD4/genética , Antígenos CD4/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Ratones , Ratones Mutantes , Obesidad/patología , Oncostatina M/genética , Subunidad beta del Receptor de Oncostatina M/genética , Subunidad beta del Receptor de Oncostatina M/metabolismo , Paniculitis/genética , Paniculitis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...