Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Adv Model Earth Syst ; 14(6): e2021MS002889, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35864945

RESUMEN

A new configuration of the Community Earth System Model (CESM)/Community Atmosphere Model with full chemistry (CAM-chem) supporting the capability of horizontal mesh refinement through the use of the spectral element (SE) dynamical core is developed and called CESM/CAM-chem-SE. Horizontal mesh refinement in CESM/CAM-chem-SE is unique and novel in that pollutants such as ozone are accurately represented at human exposure relevant scales while also directly including global feedbacks. CESM/CAM-chem-SE with mesh refinement down to ∼14 km over the conterminous US (CONUS) is the beginning of the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0). Here, MUSICAv0 is evaluated and used to better understand how horizontal resolution and chemical complexity impact ozone and ozone precursors over CONUS as compared to measurements from five aircraft campaigns, which occurred in 2013. This field campaign analysis demonstrates the importance of using finer horizontal resolution to accurately simulate ozone precursors such as nitrogen oxides and carbon monoxide. In general, the impact of using more complex chemistry on ozone and other oxidation products is more pronounced when using finer horizontal resolution where a larger number of chemical regimes are resolved. Large model biases for ozone near the surface remain in the Southeast US as compared to the aircraft observations even with updated chemistry and finer horizontal resolution. This suggests a need for adding the capability of replacing sections of global emission inventories with regional inventories, increasing the vertical resolution in the planetary boundary layer, and reducing model biases in meteorological variables such as temperature and clouds.

2.
Environ Sci Technol ; 56(12): 7657-7667, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35544773

RESUMEN

Fairbanks, Alaska, is a subarctic city with fine particle (PM2.5) concentrations that exceed air quality regulations in winter due to weak dispersion caused by strong atmospheric inversions, local emissions, and the unique chemistry occurring under the cold and dark conditions. Here, we report on observations from the winters of 2020 and 2021, motivated by our pilot study that showed exceptionally high concentrations of fine particle hydroxymethanesulfonate (HMS) or related sulfur(IV) species (e.g., sulfite and bisulfite). We deployed online particle-into-liquid sampler-ion chromatography (PILS-IC) in conjunction with a suite of instruments to determine HMS precursors (HCHO, SO2) and aerosol composition in general, with the goal to characterize the sources and sinks of HMS in wintertime Fairbanks. PM2.5 HMS comprised a significant fraction of PM2.5 sulfur (26-41%) and overall PM2.5 mass concentration of 2.8-6.8% during pollution episodes, substantially higher than what has been observed in other regions, likely due to the exceptionally low temperatures. HMS peaked in January, with lower concentrations in December and February, resulting from changes in precursors and meteorological conditions. Strong correlations with inorganic sulfate and organic mass during pollution events suggest that HMS is linked to processes responsible for poor air quality episodes. These findings demonstrate unique aspects of air pollution formation in cold and humid atmospheres.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/química , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Alaska , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Proyectos Piloto , Estaciones del Año , Azufre
3.
Environ Sci Technol ; 56(12): 7564-7577, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35579536

RESUMEN

Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements. Here, we present a novel method to estimate fire plume-integrated total carbon and speciated emission rates using a unique combination of lidar remote sensing aerosol extinction profiles and in situ measured carbon constituents. We show strong agreement between these aircraft-derived emission rates of total carbon and a detailed burned area-based inventory that distributes carbon emissions in time using Geostationary Operational Environmental Satellite FRP observations (Fuel2Fire inventory, slope = 1.33 ± 0.04, r2 = 0.93, and RMSE = 0.27). Other more commonly used inventories strongly correlate with aircraft-derived emissions but have wide-ranging over- and under-predictions. A strong correlation is found between carbon monoxide emissions estimated in situ with those derived from the TROPOspheric Monitoring Instrument (TROPOMI) for five wildfires with coincident sampling windows (slope = 0.99 ± 0.18; bias = 28.5%). Smoke emission coefficients (g MJ-1) enable direct estimations of primary gas and aerosol emissions from satellite FRP observations, and we derive these values for many compounds emitted by temperate forest fuels, including several previously unreported species.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Incendios Forestales , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Gases , Tecnología de Sensores Remotos
4.
Opt Lett ; 47(22): 5845-5848, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37219117

RESUMEN

A tunable narrow linewidth UV laser near 308 nm is necessary for highly sensitive hydroxyl (OH) radical measurement. We demonstrated a high-power fiber-based single frequency tunable pulsed UV laser at 308 nm. The UV output is generated from the sum frequency of a 515 nm fiber laser and a 768 nm fiber laser, which are harmonic generations from our proprietary high-peak-power silicate glass Yb- and Er-doped fiber amplifiers. A 3.50 W single frequency UV laser with 100.8 kHz pulse repetition rate, 3.6 ns pulse width, 34.7 µJ pulse energy, and 9.6 kW peak power has been achieved, which represents the first demonstration, to the best of our knowledge, of a high-power fiber-based 308 nm UV laser. With temperature control of the single frequency distributed feedback seed laser, the UV output is tunable for up to 792 GHz at 308 nm.

5.
Sci Adv ; 7(50): eabl3648, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34878847

RESUMEN

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.

6.
Proc Natl Acad Sci U S A ; 116(23): 11171-11180, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31110019

RESUMEN

The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 ± 0.25 × 106 cm-3), and the biseasonal average North/South Hemisphere ratio is 0.89 ± 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss.

7.
Atmos Meas Tech ; 12(11): 6079-6089, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32514321

RESUMEN

In this work, a new commercially available, laser-based, and ultra-portable formaldehyde (HCHO) gas sensor is characterized, and its usefulness for monitoring HCHO mixing ratios in both indoor and outdoor environments is assessed. Stepped calibrations and intercomparison with well-established laser-induced fluorescence (LIF) instrumentation allow a performance evaluation of the absorption-based, mid-infrared HCHO sensor from Aeris Technologies, Inc. The Aeris sensor displays linear behavior (R2 > 0.940) when compared with LIF instruments from Harvard and NASA Goddard. A non-linear least-squares fitting algorithm developed independently of the sensor's manufacturer to fit the sensor's raw absorption data during post-processing further improves instrument performance. The 3σ limit of detection (LOD) for 2, 15, and 60 min integration times are 2190, 690, and 420 pptv HCHO, respectively, for mixing ratios reported in real-time, though the LOD improves to 1800, 570, and 300 pptv HCHO, respectively, during post-processing. Moreover, the accuracy of the sensor was found to be ±(10% + 0.3) ppbv when compared against LIF instrumentation sampling ambient air. This sub-ppbv precision and level of accuracy are sufficient for most HCHO levels measured in indoor and outdoor environments. While the compact Aeris sensor is currently not a replacement for the most sensitive research-grade instrumentation available, its usefulness for monitoring HCHO is clearly demonstrated.

8.
Geophys Res Lett ; 46(10): 5601-5613, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32606484

RESUMEN

We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models.

9.
J Phys Chem A ; 122(30): 6292-6302, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29993247

RESUMEN

Hydroxymethyl hydroperoxide (HMHP), formed in the reaction of the C1 Criegee intermediate with water, is among the most abundant organic peroxides in the atmosphere. Although reaction with OH is thought to represent one of the most important atmospheric removal processes for HMHP, this reaction has been largely unstudied in the laboratory. Here, we present measurements of the kinetics and products formed in the reaction of HMHP with OH. HMHP was oxidized by OH in an environmental chamber; the decay of the hydroperoxide and the formation of formic acid and formaldehyde were monitored over time using CF3O- chemical ionization mass spectrometry (CIMS) and laser-induced fluorescence (LIF). The loss of HMHP by reaction with OH is measured relative to the loss of 1,2-butanediol [ k1,2-butanediol+OH = (27.0 ± 5.6) × 10-12 cm3 molecule-1s-1]. We find that HMHP reacts with OH at 295 K with a rate coefficient of (7.1 ± 1.5) × 10-12 cm3 molecule-1s-1, with the formic acid to formaldehyde yield in a ratio of 0.88 ± 0.21 and independent of NO concentration (3 × 1010 - 1.5 × 1013 molecules cm-3). We suggest that, exclusively, abstraction of the methyl hydrogen of HMHP results in formic acid, while abstraction of the hydroperoxy hydrogen results in formaldehyde. We further evaluate the relative importance of HMHP sinks and use global simulations from GEOS-Chem to estimate that HMHP oxidation by OH contributes 1.7 Tg yr-1 (1-3%) of global annual formic acid production.

10.
Environ Sci Technol ; 52(13): 7360-7370, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29870662

RESUMEN

Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NO x = NO + NO2). Here, we expand a previously developed fuel-based inventory of motor-vehicle emissions (FIVE) to the continental U.S. for the year 2013, and evaluate our estimates of mobile source emissions with the U.S. Environmental Protection Agency's National Emissions Inventory (NEI) interpolated to 2013. We find that mobile source emissions of NO x and carbon monoxide (CO) in the NEI are higher than FIVE by 28% and 90%, respectively. Using a chemical transport model, we model mobile source emissions from FIVE, and find consistent levels of urban NO x and CO as measured during the Southeast Nexus (SENEX) Study in 2013. Lastly, we assess the sensitivity of ozone (O3) over the Eastern U.S. to uncertainties in mobile source NO x emissions and biogenic volatile organic compound (VOC) emissions. The ground-level O3 is sensitive to reductions in mobile source NO x emissions, most notably in the Southeastern U.S. and during O3 exceedance events, under the revised standard proposed in 2015 (>70 ppb, 8 h maximum). This suggests that decreasing mobile source NO x emissions could help in meeting more stringent O3 standards in the future.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Óxidos de Nitrógeno , Sudeste de Estados Unidos , Emisiones de Vehículos
11.
Environ Sci Technol ; 51(20): 11761-11770, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28976736

RESUMEN

We report enhancements of glyoxal and methylglyoxal relative to carbon monoxide and formaldehyde in agricultural biomass burning plumes intercepted by the NOAA WP-3D aircraft during the 2013 Southeast Nexus and 2015 Shale Oil and Natural Gas Nexus campaigns. Glyoxal and methylglyoxal were measured using broadband cavity enhanced spectroscopy, which for glyoxal provides a highly selective and sensitive measurement. While enhancement ratios of other species such as methane and formaldehyde were consistent with previous measurements, glyoxal enhancements relative to carbon monoxide averaged 0.0016 ± 0.0009, a factor of 4 lower than values used in global models. Glyoxal enhancements relative to formaldehyde were 30 times lower than previously reported, averaging 0.038 ± 0.02. Several glyoxal loss processes such as photolysis, reactions with hydroxyl radicals, and aerosol uptake were found to be insufficient to explain the lower measured values of glyoxal relative to other biomass burning trace gases, indicating that glyoxal emissions from agricultural biomass burning may be significantly overestimated. Methylglyoxal enhancements were three to six times higher than reported in other recent studies, but spectral interferences from other substituted dicarbyonyls introduce an estimated correction factor of 2 and at least a 25% uncertainty, such that accurate measurements of the enhancements are difficult.


Asunto(s)
Agroquímicos , Glioxal , Compuestos Orgánicos , Aeronaves , Biomasa , Monitoreo del Ambiente , Piruvaldehído
12.
J Geophys Res Atmos ; 122(20): 11201-11226, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29527424

RESUMEN

Formaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HOx. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models. Observed HCHO mixing ratios varied from ~500 pptv near the surface to ~75 pptv in the upper troposphere. Recent convective transport of near surface HCHO and its precursors, acetaldehyde and possibly methyl hydroperoxide, increased upper tropospheric HCHO mixing ratios by ~33% (22 pptv); this air contained roughly 60% less NO than more aged air. Output from the CAM-Chem chemistry transport model (2014 meteorology) as well as nine chemistry climate models from the Chemistry-Climate Model Initiative (free-running meteorology) are found to uniformly underestimate HCHO columns derived from in situ observations by between 4 and 50%. This underestimate of HCHO likely results from a near factor of two underestimate of NO in most models, which strongly suggests errors in NOx emissions inventories and/or in the model chemical mechanisms. Likewise, the lack of oceanic acetaldehyde emissions and potential errors in the model acetaldehyde chemistry lead to additional underestimates in modeled HCHO of up to 75 pptv (~15%) in the lower troposphere.

13.
Nat Commun ; 7: 10267, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758808

RESUMEN

Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

14.
Atmos Chem Phys ; 16(21): 13477-13490, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29619044

RESUMEN

Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs) but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS campaign over the Southeast US in August-September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the Southeast US (r=0.4-0.8 on a 0.5°×0.5° grid) and in their day-to-day variability (r=0.5-0.8). However, all retrievals are biased low in the mean by 20-51%, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved.

15.
J Geophys Res Atmos ; 121(16): 9849-9861, 2016 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29619286

RESUMEN

We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and MCM v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3, and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals (δ-ISOPO2). We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of IEPOX peroxy radicals (IEPOXOO) with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

16.
Atmos Meas Tech ; 9(9): 4561-4568, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29636831

RESUMEN

Recent laboratory experiments have shown that a first generation isoprene oxidation product, ISOPOOH, can decompose to methyl vinyl ketone (MVK) and methacrolein (MACR) on instrument surfaces, leading to overestimates of MVK and MACR concentrations. Formaldehyde (HCHO) was suggested as a decomposition co-product, raising concern that in situ HCHO measurements may also be affected by an ISOPOOH interference. The HCHO measurement artifact from ISOPOOH for the NASA In Situ Airborne Formaldehyde instrument (ISAF) was investigated for the two major ISOPOOH isomers, (1,2)-ISOPOOH and (4,3)-ISOPOOH, under dry and humid conditions. The dry conversion of ISOPOOH to HCHO was 3±2% and 6±4% for (1,2)-ISOPOOH and (4,3)-ISOPOOH, respectively. Under humid (RH= 40-60%) conditions, conversion to HCHO was 6±4% for (1,2)-ISOPOOH and 10±5% for (4,3)-ISOPOOH. The measurement artifact caused by conversion of ISOPOOH to HCHO in the ISAF instrument was estimated for data obtained on the 2013 September 6 flight of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. Prompt ISOPOOH conversion to HCHO was the source for <4% of the observed HCHO, including in the high-isoprene boundary layer. Time-delayed conversion, where previous exposure to ISOPOOH affects measured HCHO later in flight, was conservatively estimated to be < 10% of observed HCHO and is significant only when high ISOPOOH sampling periods immediately precede periods of low HCHO.

17.
J Phys Chem A ; 113(51): 14099-108, 2009 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19852447

RESUMEN

Recent laboratory measurements of the absorption cross sections of the ClO dimer, ClOOCl, have called into question the validity of the mechanism that describes the catalytic removal of ozone by chlorine. Here we describe direct measurements of the rate-determining step of that mechanism, the production of Cl atoms from the photolysis of ClOOCl, under laboratory conditions similar to those in the stratosphere. ClOOCl is formed in a cold-temperature flowing system, with production initiated by a microwave discharge of Cl(2) or photolysis of CF(2)Cl(2). Excimer lasers operating at 248, 308, and 352 nm photodissociate ClOOCl, and the Cl atoms produced are detected with time-resolved atomic resonance fluorescence. Cl(2), the primary contaminant, is measured directly for the first time in a ClOOCl cross section experiment. We find the product of the quantum yield of the Cl atom production channel of ClOOCl photolysis and the ClOOCl absorption cross section, (phisigma)(ClOOCl) = 660 +/- 100 at 248 nm, 39.3 +/- 4.9 at 308 nm, and 8.6 +/- 1.2 at 352 nm (units of 10(-20) cm(2) molecule(-1)). The data set includes 468 total cross section measurements over a wide range of experimental conditions, significantly reducing the possibility of a systematic error impacting the results. These new measurements demonstrate that long-wavelength photons (lambda = 352 nm) are absorbed by ClOOCl directly, producing Cl atoms with a probability commensurate with the observed rate of ozone destruction in the atmosphere.


Asunto(s)
Atmósfera/química , Compuestos de Cloro/química , Cloro/química , Ozono/química , Peróxidos/química , Fotólisis , Algoritmos , Compuestos de Cloro/efectos de la radiación , Clorofluorocarburos de Metano/química , Cinética , Rayos Láser , Microondas , Modelos Químicos , Dióxido de Nitrógeno/química , Peróxidos/efectos de la radiación , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Rayos Ultravioleta
18.
J Phys Chem A ; 109(47): 10675-82, 2005 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16863116

RESUMEN

The rotationally resolved ultraviolet absorption cross sections for the 2(0)(0)4(1)(0) vibrational band of the A(1)A(2)-X(1)A(1) electronic transition of formaldehyde (HCHO) at an apodized resolution of 0.027 cm(-1) (approximately 0.0003 nm at 352 nm) over the spectral range 28100-28500 cm(-1) (351-356 nm) at 298 and 220 K, using Fourier transform spectroscopy, are first reported here. Accurate rotationally resolved cross sections are important for the development of in situ HCHO laser-induced fluorescence (LIF) instruments and for atmospheric monitoring. Pressure dependence of the cross sections between 75 and 400 Torr at 298 K was explored, and an average pressure broadening coefficient in dry air of 1.8 x 10(-4) cm(-1) Torr(-1) for several isolated lines is reported. Gaseous HCHO was quantitatively introduced into a flow cell by evaporating micron-sized droplets of HCHO solution, using a novel microinjector technique. The condensed-phase concentrations of HCHO were determined by iodometric titrations to an accuracy of <1%. Accuracy of the measured absorption cross sections is estimated to be better than +/-5%. Integrated and differential cross sections over the entire band at low resolution (approximately 1 cm(-1)) obtained with our calibration technique are in excellent agreement with previous measurements. A maximum differential cross section of 5.7 x 10(-19) cm(2) molecule(-1) was observed at high resolution-almost an order of magnitude greater than any previously reported data at low resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA