Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7349, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963864

RESUMEN

Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Animales , Ratones , Triptasas/genética , Receptor Toll-Like 7/genética , Imiquimod , Pulmón , Enfisema Pulmonar/genética , Nicotiana , Ratones Endogámicos C57BL
2.
PLoS One ; 16(1): e0245354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33418559

RESUMEN

Klebsiella pneumoniae are opportunistic bacteria found in the gut. In recent years they have been associated with nosocomial infections. The increased incidence of multiple drug-resistant K. pneumoniae makes it necessary to find new alternatives to treat the disease. In this study, phage UPM2146 was isolated from a polluted lake which can lyse its host K. pneumoniae ATCC BAA-2146. Observation from TEM shows that UPM2146 belongs to Caudoviriales (Order) based on morphological appearance. Whole genome analysis of UPM2146 showed that its genome comprises 160,795 bp encoding for 214 putative open reading frames (ORFs). Phylogenetic analysis revealed that the phage belongs to Ackermannviridae (Family) under the Caudoviriales. UPM2146 produces clear plaques with high titers of 1010 PFU/ml. The phage has an adsorption period of 4 min, latent period of 20 min, rise period of 5 min, and releases approximately 20 PFU/ bacteria at Multiplicity of Infection (MOI) of 0.001. UPM2146 has a narrow host-range and can lyse 5 out of 22 K. pneumoniae isolates (22.72%) based on spot test and efficiency of plating (EOP). The zebrafish larvae model was used to test the efficacy of UPM2146 in lysing its host. Based on colony forming unit counts, UPM2146 was able to completely lyse its host at 10 hours onwards. Moreover, we show that the phage is safe to be used in the treatment against K. pneumoniae infections in the zebrafish model.


Asunto(s)
Bacteriófagos/fisiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/virología , Animales , Bacteriófagos/genética , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Genoma Viral , Especificidad del Huésped , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/terapia , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/fisiología , Terapia de Fagos , Pez Cebra
3.
Front Microbiol ; 11: 960, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714281

RESUMEN

The inhibitory properties of novel antimicrobial proteins against food-borne pathogens such as Listeria monocytogenes offer extensive benefits to the food and medical industries. In this study, we have identified antimicrobial proteins from a milk curd-derived bacterial isolate that exhibits antilisterial activity using genome mining and mass spectrometry analysis. The analysis of the draft genome sequence identified the isolate as Paenibacillus polymyxa Kp10, and predicted the presence of antimicrobial paenibacillin, paenilan, paeninodin, sactipeptides, thiazole-oxazole modified microcin, and histone-like DNA binding protein HU encoded in its genome. Interestingly, nanoLC-MS/MS analysis identified two histone-like DNA binding proteins HU as predicted in silico earlier, exhibiting antilisterial activity. Additionally, translation initiation factor IF-1 and 50S ribosomal protein L29 were also discovered by the mass spectrometry in the active fractions. The antilisterial activity of the four proteins was verified through heterologous protein expression and antimicrobial activity assay in vitro. This study has identified structural regulatory proteins from Paenibacillus possessing antilisterial activity with potential future application in the food and medical industries.

4.
Food Chem ; 324: 126664, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32380410

RESUMEN

Authentication of meat products is critical in the food industry. Meat adulteration may lead to religious apprehensions, financial gain and food-toxicities such as meat allergies. Thus, empirical validation of the quality and constituents of meat is paramount. Various analytical methods often based on protein or DNA measurements are utilized to identify meat species. Protein-based methods, including electrophoretic and immunological techniques, are at times unsuitable for discriminating closely related species. Most of these methods have been replaced by more accurate and sensitive detection methods, such as DNA-based techniques. Emerging technologies like DNA barcoding and mass spectrometry are still in their infancy when it comes to their utilization in meat detection. Gold nanobiosensors have shown some promise in this regard. However, its applicability in small scale industries is distant. This article comprehensively reviews the recent developments in the field of analytical methods used for porcine identification.


Asunto(s)
Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Productos de la Carne/análisis , Porcinos , Animales , Técnicas Biosensibles , Cromatografía/métodos , ADN/análisis , Análisis de los Alimentos/instrumentación , Espectrometría de Masas , Carne/análisis , Reacción en Cadena de la Polimerasa , Proteínas/análisis , Análisis Espectral/métodos , Porcinos/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-32027553

RESUMEN

The usage of porcine pepsin or other porcine derivatives in food products is a common practice in European, American and certain Asian countries although it creates issues in religious and personnel health concerns. In this study, porcine pepsin was detected using indirect ELISA that involved the anti-pep80510 polyclonal antibody raised against a specific peptide of porcine pepsin, pep80510. The sensitivity of the assay for standard porcine pepsin was 0.008 µg/g. The immunoassay did not cross-react to other animal rennet and milk proteins except for microbial coagulant from Mucor miehie. The recovery of porcine pepsin in spiked cheese curd within the range of CV < 20% while for porcine pepsin in spiked cheese whey the recovery is also within the range of CV% < 20%.


Asunto(s)
Anticuerpos/química , Queso/análisis , Ensayo de Inmunoadsorción Enzimática , Análisis de los Alimentos , Contaminación de Alimentos/análisis , Modelos Biológicos , Pepsina A/análisis , Animales , Porcinos
6.
Artículo en Inglés | MEDLINE | ID: mdl-29285986

RESUMEN

Detection of porcine plasma using indirect ELISA was developed using mAb B4E1 for the prevention of their usage in human food that creates religious and health conflicts. The immunoassay has a CV < 20% and did not cross-react to other meat and non-meat proteins. The sensitivity of the assay is 0.25% (w/w) of porcine plasma in spiked raw and cooked fish surimi. The assay did not produce a false positive result for any of the commercial fish surimi tested that were not contain porcine plasma. Determination of a 60-kDa antigenic protein of porcine blood using Western blot confirmed its presence in the plasma fraction of the porcine blood. Further proteomic analysis involving liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed the 60-kDa protein to be porcine serum albumin.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Ensayo de Inmunoadsorción Enzimática , Productos Pesqueros/análisis , Contaminación de Alimentos/análisis , Técnicas para Inmunoenzimas/métodos , Albúmina Sérica/análisis , Porcinos/sangre , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Culinaria , Espectrometría de Masas en Tándem
7.
Am J Physiol Lung Cell Mol Physiol ; 314(2): L298-L317, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29025711

RESUMEN

Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death and imposes major socioeconomic burdens globally. It is a progressive and disabling condition that severely impairs breathing and lung function. There is a lack of effective treatments for COPD, which is a direct consequence of the poor understanding of the underlying mechanisms involved in driving the pathogenesis of the disease. Toll-like receptor (TLR)2 and TLR4 are implicated in chronic respiratory diseases, including COPD, asthma and pulmonary fibrosis. However, their roles in the pathogenesis of COPD are controversial and conflicting evidence exists. In the current study, we investigated the role of TLR2 and TLR4 using a model of cigarette smoke (CS)-induced experimental COPD that recapitulates the hallmark features of human disease. TLR2, TLR4, and associated coreceptor mRNA expression was increased in the airways in both experimental and human COPD. Compared with wild-type (WT) mice, CS-induced pulmonary inflammation was unaltered in TLR2-deficient ( Tlr2-/-) and TLR4-deficient ( Tlr4-/-) mice. CS-induced airway fibrosis, characterized by increased collagen deposition around small airways, was not altered in Tlr2-/- mice but was attenuated in Tlr4-/- mice compared with CS-exposed WT controls. However, Tlr2-/- mice had increased CS-induced emphysema-like alveolar enlargement, apoptosis, and impaired lung function, while these features were reduced in Tlr4-/- mice compared with CS-exposed WT controls. Taken together, these data highlight the complex roles of TLRs in the pathogenesis of COPD and suggest that activation of TLR2 and/or inhibition of TLR4 may be novel therapeutic strategies for the treatment of COPD.


Asunto(s)
Enfisema/etiología , Nicotiana/toxicidad , Neumonía/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptor Toll-Like 2/fisiología , Receptor Toll-Like 4/fisiología , Animales , Apoptosis , Líquido del Lavado Bronquioalveolar , Enfisema/patología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neumonía/patología , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
8.
Am J Respir Crit Care Med ; 191(9): 1012-23, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25751541

RESUMEN

RATIONALE: Chronic obstructive pulmonary disease (COPD) and influenza virus infections are major global health issues. Patients with COPD are more susceptible to infection, which exacerbates their condition and increases morbidity and mortality. The mechanisms of increased susceptibility remain poorly understood, and current preventions and treatments have substantial limitations. OBJECTIVES: To characterize the mechanisms of increased susceptibility to influenza virus infection in COPD and the potential for therapeutic targeting. METHODS: We used a combination of primary bronchial epithelial cells (pBECs) from COPD and healthy control subjects, a mouse model of cigarette smoke-induced experimental COPD, and influenza infection. The role of the phosphoinositide-3-kinase (PI3K) pathway was characterized using molecular methods, and its potential for targeting assessed using inhibitors. MEASUREMENTS AND MAIN RESULTS: COPD pBECs were susceptible to increased viral entry and replication. Infected mice with experimental COPD also had more severe infection (increased viral titer and pulmonary inflammation, and compromised lung function). These processes were associated with impaired antiviral immunity, reduced retinoic acid-inducible gene-I, and IFN/cytokine and chemokine responses. Increased PI3K-p110α levels and activity in COPD pBECs and/or mice were responsible for increased infection and reduced antiviral responses. Global PI3K, specific therapeutic p110α inhibitors, or exogenous IFN-ß restored protective antiviral responses, suppressed infection, and improved lung function. CONCLUSIONS: The increased susceptibility of individuals with COPD to influenza likely results from impaired antiviral responses, which are mediated by increased PI3K-p110α activity. This pathway may be targeted therapeutically in COPD, or in healthy individuals, during seasonal or pandemic outbreaks to prevent and/or treat influenza.


Asunto(s)
Antivirales/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Gripe Humana/tratamiento farmacológico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/virología , Adulto , Anciano , Animales , Bronquios/efectos de los fármacos , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Gripe Humana/virología , Masculino , Ratones , Persona de Mediana Edad
9.
J Allergy Clin Immunol ; 131(3): 752-62, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23380220

RESUMEN

BACKGROUND: Cigarette smoke-induced chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory disorder of the lung. The development of effective therapies for COPD has been hampered by the lack of an animal model that mimics the human disease in a short timeframe. OBJECTIVES: We sought to create an early-onset mouse model of cigarette smoke-induced COPD that develops the hallmark features of the human condition in a short time-frame. We also sought to use this model to better understand pathogenesis and the roles of macrophages and mast cells (MCs) in patients with COPD. METHODS: Tightly controlled amounts of cigarette smoke were delivered to the airways of mice, and the development of the pathologic features of COPD was assessed. The roles of macrophages and MC tryptase in pathogenesis were evaluated by using depletion and in vitro studies and MC protease 6-deficient mice. RESULTS: After just 8 weeks of smoke exposure, wild-type mice had chronic inflammation, mucus hypersecretion, airway remodeling, emphysema, and reduced lung function. These characteristic features of COPD were glucocorticoid resistant and did not spontaneously resolve. Systemic effects on skeletal muscle and the heart and increased susceptibility to respiratory tract infections also were observed. Macrophages and tryptase-expressing MCs were required for the development of COPD. Recombinant MC tryptase induced proinflammatory responses from cultured macrophages. CONCLUSION: A short-term mouse model of cigarette smoke-induced COPD was developed in which the characteristic features of the disease were induced more rapidly than in existing models. The model can be used to better understand COPD pathogenesis, and we show a requirement for macrophages and tryptase-expressing MCs.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Humo/efectos adversos , Triptasas/inmunología , Remodelación de las Vías Aéreas (Respiratorias) , Animales , Macrófagos/inmunología , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Pruebas de Función Respiratoria , Nicotiana , Triptasas/deficiencia , Triptasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...