Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Anesthesiol ; 23(1): 310, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700240

RESUMEN

BACKGROUND: Checkpoint inhibitor-induced overlap syndrome ([OS] myocarditis, and myositis with or without myasthenia gravis) is rare but life-threatening. CASES PRESENTATION: Here we present a case series of four cancer patients that developed OS. High troponinemia raised the concern for myocarditis in all the cases. However, the predominant clinical feature differed among the cases. Two patients showed marked myocarditis with a shorter hospital stay. The other two patients had a prolonged ICU stay due to severe neuromuscular involvement secondary to myositis and myasthenia gravis. Treatment was based on steroids, plasmapheresis, intravenous immunoglobulin, and immunosuppressive biological agents. CONCLUSION: The management of respiratory failure is challenging, particularly in those patients with predominant MG. Along with intensive clinical monitoring, bedside respiratory mechanics can guide the decision-making process of selecting a respiratory support method, the timing of elective intubation and extubation.


Asunto(s)
Miastenia Gravis , Miocarditis , Miositis , Insuficiencia Respiratoria , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunosupresores , Síndrome , Insuficiencia Respiratoria/inducido químicamente , Insuficiencia Respiratoria/terapia
2.
Mayo Clin Proc ; 98(3): 451-457, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36868753

RESUMEN

There is scant information on the clinical progression, end-of-life decisions, and cause of death of patients with cancer diagnosed with COVID-19. Therefore, we conducted a case series of patients admitted to a comprehensive cancer center who did not survive their hospitalization. To determine the cause of death, 3 board-certified intensivists reviewed the electronic medical records. Concordance regarding cause of death was calculated. Discrepancies were resolved through a joint case-by-case review and discussion among the 3 reviewers. During the study period, 551 patients with cancer and COVID-19 were admitted to a dedicated specialty unit; among them, 61 (11.6%) were nonsurvivors. Among nonsurvivors, 31 (51%) patients had hematologic cancers, and 29 (48%) had undergone cancer-directed chemotherapy within 3 months before admission. The median time to death was 15 days (95% confidence interval [CI], 11.8 to 18.2). There were no differences in time to death by cancer category or cancer treatment intent. The majority of decedents (84%) had full code status at admission; however, 53 (87%) had do-not-resuscitate orders at the time of death. Most deaths were deemed to be COVID-19 related (88.5%). The concordance between the reviewers for the cause of death was 78.7%. In contrast to the belief that COVID-19 decedents die because of their comorbidities, in our study only 1 of every 10 patients died of cancer-related causes. Full-scale interventions were offered to all patients irrespective of oncologic treatment intent. However, most decedents in this population preferred care with nonresuscitative measures rather than full support at the end of life.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Neoplasias , Humanos , Causas de Muerte , Oncología Médica
4.
Am J Respir Cell Mol Biol ; 66(1): 53-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34370624

RESUMEN

Idiopathic pulmonary fibrosis (IPF), a devastating, fibroproliferative, chronic lung disorder, is associated with expansion of fibroblasts/myofibroblasts, which leads to excessive production and deposition of extracellular matrix. IPF is typically clinically identified as end-stage lung disease, after fibrotic processes are well-established and advanced. Fibroblasts have been shown to be critically important in the development and progression of IPF. We hypothesize that differential chromatin access can drive genetic differences in IPF fibroblasts relative to healthy fibroblasts. To this end, we performed assay of transposase-accessible chromatin sequencing to identify differentially accessible regions within the genomes of fibroblasts from healthy and IPF lungs. Multiple motifs were identified to be enriched in IPF fibroblasts compared with healthy fibroblasts, including binding motifs for TWIST1 and FOXA1. RNA sequencing identified 93 genes that could be annotated to differentially accessible regions. Pathway analysis of the annotated genes identified cellular adhesion, cytoskeletal anchoring, and cell differentiation as important biological processes. In addition, single nucleotide polymorphism analysis showed that linkage disequilibrium blocks of IPF risk single nucleotide polymorphisms with IPF-accessible regions that have been identified to be located in genes that are important in IPF, including MUC5B, TERT, and TOLLIP. Validation studies in isolated lung tissue confirmed increased expression for TWIST1 and FOXA1 in addition to revealing SHANK2 and CSPR2 as novel targets. Thus, modulation of differential chromatin access may be an important mechanism in the pathogenesis of lung fibrosis.


Asunto(s)
Epigénesis Genética , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Transcriptoma/genética , Secuencia de Bases , Cromatina/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción/metabolismo , Transposasas/metabolismo
5.
Front Mol Biosci ; 7: 624093, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537342

RESUMEN

Background: Acute respiratory distress syndrome (ARDS) is a severe and often fatal disease. The causes that lead to ARDS are multiple and include inhalation of salt water, smoke particles, or as a result of damage caused by respiratory viruses. ARDS can also arise due to systemic complications such as blood transfusions, sepsis, or pancreatitis. Unfortunately, despite a high mortality rate of 40%, there are limited treatment options available for ARDS outside of last resort options such as mechanical ventilation and extracorporeal support strategies. Aim of review: A complication of ARDS is the development of pulmonary hypertension (PH); however, the mechanisms that lead to PH in ARDS are not fully understood. In this review, we summarize the known mechanisms that promote PH in ARDS. Key scientific concepts of review: (1) Provide an overview of acute respiratory distress syndrome; (2) delineate the mechanisms that contribute to the development of PH in ARDS; (3) address the implications of PH in the setting of coronavirus disease 2019 (COVID-19).

6.
Dis Model Mech ; 12(5)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31036697

RESUMEN

Combined pulmonary fibrosis and emphysema (CPFE) is a syndrome that predominantly affects male smokers or ex-smokers and it has a mortality rate of 55% and a median survival of 5 years. Pulmonary hypertension (PH) is a frequently fatal complication of CPFE. Despite this dismal prognosis, no curative therapies exist for patients with CPFE outside of lung transplantation and no therapies are recommended to treat PH. This highlights the need to develop novel treatment approaches for CPFE. Studies from our group have demonstrated that both adenosine and its receptor ADORA2B are elevated in chronic lung diseases. Activation of ADORA2B leads to elevated levels of hyaluronan synthases (HAS) and increased hyaluronan, a glycosaminoglycan that contributes to chronic lung injury. We hypothesize that ADORA2B and hyaluronan contribute to CPFE. Using isolated CPFE lung tissue, we characterized expression levels of ADORA2B and HAS. Next, using a unique mouse model of experimental lung injury that replicates features of CPFE, namely airspace enlargement, PH and fibrotic deposition, we investigated whether 4MU, a HAS inhibitor, was able to inhibit features of CPFE. Increased protein levels of ADORA2B and HAS3 were detected in CPFE and in our experimental model of CPFE. Treatment with 4MU was able to attenuate PH and fibrosis but not airspace enlargement. This was accompanied by a reduction of HAS3-positive macrophages. We have generated pre-clinical data demonstrating the capacity of 4MU, an FDA-approved drug, to attenuate features of CPFE in an experimental model of chronic lung injury.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Adenosina/efectos adversos , Ácido Hialurónico/efectos adversos , Fibrosis Pulmonar Idiopática/complicaciones , Fibrosis Pulmonar Idiopática/patología , Enfisema Pulmonar/complicaciones , Enfisema Pulmonar/patología , Agonistas del Receptor de Adenosina A2/farmacología , Adenosina Desaminasa/metabolismo , Animales , Línea Celular , Enfermedad Crónica , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Humanos , Hialuronano Sintasas/metabolismo , Lesión Pulmonar/complicaciones , Lesión Pulmonar/patología , Macrófagos/metabolismo , Ratones , Receptor de Adenosina A2B/metabolismo
7.
Front Physiol ; 9: 555, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29910735

RESUMEN

Background: Pulmonary hypertension (PH) is a devastating and progressive disease characterized by excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and remodeling of the lung vasculature. Adenosine signaling through the ADORA2B receptor has previously been implicated in disease progression and tissue remodeling in chronic lung disease. In experimental models of PH associated with chronic lung injury, pharmacological or genetic inhibition of ADORA2B improved markers of chronic lung injury and hallmarks of PH. However, the contribution of ADORA2B expression in the PASMC was not fully evaluated. Hypothesis: We hypothesized that adenosine signaling through the ADORA2B receptor in PASMC mediates the development of PH. Methods: PASMCs from controls and patients with idiopathic pulmonary arterial hypertension (iPAH) were characterized for expression levels of all adenosine receptors. Next, we evaluated the development of PH in ADORA2Bf/f-Transgelin (Tagln)cre mice. These mice or adequate controls were exposed to a combination of SUGEN (SU5416, 20 mg/kg/b.w. IP) and hypoxia (10% O2) for 28 days (HX-SU) or to chronic low doses of bleomycin (BLM, 0.035U/kg/b.w. IP). Cardiovascular readouts including right ventricle systolic pressures (RVSPs), Fulton indices and vascular remodeling were determined. Using PASMCs we identified ADORA2B-dependent mediators involved in vascular remodeling. These mediators: IL-6, hyaluronan synthase 2 (HAS2) and tissue transglutaminase (Tgm2) were determined by RT-PCR and validated in our HX-SU and BLM models. Results: Increased levels of ADORA2B were observed in PASMC from iPAH patients. ADORA2Bf/f-Taglncre mice were protected from the development of PH following HX-SU or BLM exposure. In the BLM model of PH, ADORA2Bf/f- Taglncre mice were not protected from the development of fibrosis. Increased expression of IL-6, HAS2 and Tgm2 was observed in PASMC in an ADORA2B-dependent manner. These mediators were also reduced in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Conclusions: Our studies revealed ADORA2B-dependent increased levels of IL-6, hyaluronan and Tgm2 in PASMC, consistent with reduced levels in ADORA2Bf/f- Taglncre mice exposed to HX-SU or BLM. Taken together, our data indicates that ADORA2B on PASMC mediates the development of PH through the induction of IL-6, hyaluronan and Tgm2. These studies point at ADORA2B as a therapeutic target to treat PH.

8.
Br J Pharmacol ; 174(19): 3284-3301, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28688167

RESUMEN

BACKGROUND AND PURPOSE: Group III pulmonary hypertension (PH) is a highly lethal and widespread lung disorder that is a common complication in idiopathic pulmonary fibrosis (IPF) where it is considered to be the single most significant predictor of mortality. While increased levels of hyaluronan have been observed in IPF patients, hyaluronan-mediated vascular remodelling and the hyaluronan-mediated mechanisms promoting PH associated with IPF are not fully understood. EXPERIMENTAL APPROACH: Explanted lung tissue from patients with IPF with and without a diagnosis of PH was used to identify increased levels of hyaluronan. In addition, an experimental model of lung fibrosis and PH was used to test the capacity of 4-methylumbeliferone (4MU), a hyaluronan synthase inhibitor to attenuate PH. Human pulmonary artery smooth muscle cells (PASMC) were used to identify the hyaluronan-specific mechanisms that lead to the development of PH associated with lung fibrosis. KEY RESULTS: In patients with IPF and PH, increased levels of hyaluronan and expression of hyaluronan synthase genes are present. Interestingly, we also report increased levels of hyaluronidases in patients with IPF and IPF with PH. Remarkably, our data also show that 4MU is able to inhibit PH in our model either prophylactically or therapeutically, without affecting fibrosis. Studies to determine the hyaluronan-specific mechanisms revealed that hyaluronan fragments result in increased PASMC stiffness and proliferation but reduced cell motility in a RhoA-dependent manner. CONCLUSIONS AND IMPLICATIONS: Taken together, our results show evidence of a unique mechanism contributing to PH in the context of lung fibrosis.


Asunto(s)
Ácido Hialurónico/antagonistas & inhibidores , Himecromona/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Anciano , Animales , Células Cultivadas , Femenino , Humanos , Hialuronano Sintasas/genética , Ácido Hialurónico/metabolismo , Himecromona/farmacología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocitos del Músculo Liso/efectos de los fármacos , Arteria Pulmonar/citología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Serina Endopeptidasas/metabolismo , Remodelación Vascular/efectos de los fármacos
9.
Can Respir J ; 2017: 1430350, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28286407

RESUMEN

Pulmonary hypertension (PH) is commonly present in patients with chronic lung diseases such as Chronic Obstructive Pulmonary Disease (COPD) or Idiopathic Pulmonary Fibrosis (IPF) where it is classified as Group III PH by the World Health Organization (WHO). PH has been identified to be present in as much as 40% of patients with COPD or IPF and it is considered as one of the principal predictors of mortality in patients with COPD or IPF. However, despite the prevalence and fatal consequences of PH in the setting of chronic lung diseases, there are limited therapies available for patients with Group III PH, with lung transplantation remaining as the most viable option. This highlights our need to enhance our understanding of the molecular mechanisms that lead to the development of Group III PH. In this review we have chosen to focus on the current understating of PH in IPF, we will revisit the main mediators that have been shown to play a role in the development of the disease. We will also discuss the experimental models available to study PH associated with lung fibrosis and address the role of the right ventricle in IPF. Finally we will summarize the current available treatment options for Group III PH outside of lung transplantation.


Asunto(s)
Hipertensión Pulmonar/etiología , Fibrosis Pulmonar Idiopática/complicaciones , Animales , Modelos Animales de Enfermedad , Epigénesis Genética , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertensión Pulmonar/epidemiología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/terapia , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...