Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107163, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484799

RESUMEN

The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies. The activity of this promising parent VHH named Z70 relies on its binding within the central region of the tau protein. Accordingly, we carried out random mutagenesis followed by yeast two-hybrid screening to obtain optimized variants. The VHHs selected from this initial screen targeted the same epitope as VHH Z70 as shown using NMR spectroscopy and had indeed improved binding affinities according to dissociation constant values obtained by surface plasmon resonance spectroscopy. The improved affinities can be partially rationalized based on three-dimensional structures and NMR data of three complexes consisting of an optimized VHH and a peptide containing the tau epitope. Interestingly, the ability of the VHH variants to inhibit tau aggregation and seeding could not be predicted from their affinity alone. We indeed showed that the in vitro and in cellulo VHH stabilities are other limiting key factors to their efficacy. Our results demonstrate that only a complete pipeline of experiments, here described, permits a rational selection of optimized VHH variants, resulting in the selection of VHH variants with higher affinities and/or acting against tau seeding in cell models.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Anticuerpos de Dominio Único , Proteínas tau , Humanos , Epítopos/química , Epítopos/inmunología , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/inmunología , Péptidos/química , Péptidos/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Proteínas tau/química , Proteínas tau/inmunología
2.
Biophys Chem ; 305: 107155, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38100856

RESUMEN

Intrinsically disordered proteins (IDPs) are known to adopt many rapidly interconverting structures, making it difficult to pinpoint the specific conformational states that are relevant for their function. Tau is an important IDP, and its conformation is known to be affected by post-translational modifications (PTMs), such as phosphorylation. To investigate the effect of specific phosphorylation on full-length Tau's dynamic global conformation, we employed a combination of nuclear magnetic resonance-based paramagnetic relaxation interference methods and electron paramagnetic resonance spectroscopy. By reproducing the AT8 epitope, comprising exclusive phosphorylation at residues S202 and T205, we were able to identify conformations specific to phosphorylated Tau, which exhibited a tendency towards less compact states. These mechanistic details are of significance to understand the path leading from soluble Tau to the ordered structure of Tau fibers. This approach proved to be successful for studying the conformational changes of (phosphorylated) full-length Tau and can potentially be extended to the study of other IDPs that undergo various PTMs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas tau , Fosforilación , Proteínas tau/química , Espectroscopía de Resonancia Magnética , Conformación Proteica , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular
3.
Cell Mol Life Sci ; 80(11): 326, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833515

RESUMEN

The hepatitis E virus (HEV) is an underestimated RNA virus of which the viral life cycle and pathogenicity remain partially understood and for which specific antivirals are lacking. The virus exists in two forms: nonenveloped HEV that is shed in feces and transmits between hosts; and membrane-associated, quasi-enveloped HEV that circulates in the blood. It is suggested that both forms employ different mechanisms for cellular entry and internalization but little is known about the exact mechanisms. Interestingly, the membrane of enveloped HEV is enriched with phosphatidylserine, a natural ligand for the T-cell immunoglobulin and mucin domain-containing protein 1 (TIM1) during apoptosis and involved in 'apoptotic mimicry', a process by which viruses hijack the apoptosis pathway to promote infection. We here investigated the role of TIM1 in the entry process of HEV. We determined that HEV infection with particles derived from culture supernatant, which are cloaked by host-derived membranes (eHEV), was significantly impaired after knockout of TIM1, whereas infection with intracellular HEV particles (iHEV) was unaffected. eHEV infection was restored upon TIM1 expression; and enhanced after ectopic TIM1 expression. The significance of TIM1 during entry was further confirmed by viral binding assay, and point mutations of the PS-binding pocket diminished eHEV infection. In addition, Annexin V, a PS-binding molecule also significantly reduced infection. Taken together, our findings support a role for TIM1 in eHEV-mediated cell entry, facilitated by the PS present on the viral membrane, a strategy HEV may use to promote viral spread throughout the infected body.


Asunto(s)
Virus de la Hepatitis E , Virus , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/metabolismo , Internalización del Virus , Receptores de Superficie Celular/metabolismo
4.
Biochemistry ; 62(11): 1631-1642, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37167199

RESUMEN

An increase in phosphorylation of the Tau protein is associated with Alzheimer's disease (AD) progression through unclear molecular mechanisms. In general, phosphorylation modifies the interaction of intrinsically disordered proteins, such as Tau, with other proteins; however, elucidating the structural basis of this regulation mechanism remains challenging. The bridging integrator-1 gene is an AD genetic determinant whose gene product, BIN1, directly interacts with Tau. The proline-rich motif recognized within a Tau(210-240) peptide by the SH3 domain of BIN1 (BIN1 SH3) is defined as 216PTPP219, and this interaction is modulated by phosphorylation. Phosphorylation of T217 within the Tau(210-240) peptide led to a 6-fold reduction in the affinity, while single phosphorylation at either T212, T231, or S235 had no effect on the interaction. Nonetheless, combined phosphorylation of T231 and S235 led to a 3-fold reduction in the affinity, although these phosphorylations are not within the BIN1 SH3-bound region of the Tau peptide. Using nuclear magnetic resonance (NMR) spectroscopy, these phosphorylations were shown to affect the local secondary structure and dynamics of the Tau(210-240) peptide. Models of the (un)phosphorylated peptides were obtained from molecular dynamics (MD) simulation validated by experimental data and showed compaction of the phosphorylated peptide due to increased salt bridge formation. This dynamic folding might indirectly impact the BIN1 SH3 binding by a decreased accessibility of the binding site. Regulation of the binding might thus not only be due to local electrostatic or steric effects from phosphorylation but also to the modification of the conformational properties of Tau.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Fosforilación , Dominios Homologos src , Unión Proteica , Enfermedad de Alzheimer/metabolismo , Péptidos/química , Sitios de Unión , Prolina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo
5.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986435

RESUMEN

Mycobacterium tuberculosis, the pathogen that causes tuberculosis, is responsible for the death of 1.5 million people each year and the number of bacteria resistant to the standard regimen is constantly increasing. This highlights the need to discover molecules that act on new M. tuberculosis targets. Mycolic acids, which are very long-chain fatty acids essential for M. tuberculosis viability, are synthesized by two types of fatty acid synthase (FAS) systems. MabA (FabG1) is an essential enzyme belonging to the FAS-II cycle. We have recently reported the discovery of anthranilic acids as MabA inhibitors. Here, the structure-activity relationships around the anthranilic acid core, the binding of a fluorinated analog to MabA by NMR experiments, the physico-chemical properties and the antimycobacterial activity of these inhibitors were explored. Further investigation of the mechanism of action in bacterio showed that these compounds affect other targets than MabA in mycobacterial cells and that their antituberculous activity is due to the carboxylic acid moiety which induces intrabacterial acidification.

6.
Biomol NMR Assign ; 17(1): 49-54, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740661

RESUMEN

The Endosomal Sorting Complex Required for Transport (ESCRT) pathway, through inverse topology membrane remodeling, is involved in many biological functions, such as ubiquitinated membrane receptor trafficking and degradation, multivesicular bodies (MVB) formation and cytokinesis. Dysfunctions in ESCRT pathway have been associated to several human pathologies, such as cancers and neurodegenerative diseases. The ESCRT machinery is also hijacked by many enveloped viruses to bud away from the plasma membrane of infected cells. Human tumor susceptibility gene 101 (Tsg101) protein is an important ESCRT-I complex component. The structure of the N-terminal ubiquitin E2 variant (UEV) domain of Tsg101 (Tsg101-UEV) comprises an ubiquitin binding pocket next to a late domain [P(S/T)AP] binding groove. These two binding sites have been shown to be involved both in the physiological roles of ESCRT-I and in the release of the viral particles, and thus are attractive targets for antivirals. The structure of the Tsg101-UEV domain has been characterized, using X-ray crystallography or NMR spectroscopy, either in its apo-state or bound to ubiquitin or late domains. In this study, we report the backbone NMR resonance assignments, including the proline signals, of the apo human Tsg101-UEV domain, that so far was not publicly available. These data, that are in good agreement with the crystallographic structure of Tsg101-UEV domain, can therefore be used for further NMR studies, including protein-protein interaction studies and drug discovery.


Asunto(s)
Proteínas de Unión al ADN , Ubiquitina , Humanos , Ubiquitina/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas de Unión al ADN/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
7.
Eur J Med Chem ; 250: 115186, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796300

RESUMEN

Since end of 2019, the global and unprecedented outbreak caused by the coronavirus SARS-CoV-2 led to dramatic numbers of infections and deaths worldwide. SARS-CoV-2 produces two large viral polyproteins which are cleaved by two cysteine proteases encoded by the virus, the 3CL protease (3CLpro) and the papain-like protease, to generate non-structural proteins essential for the virus life cycle. Both proteases are recognized as promising drug targets for the development of anti-coronavirus chemotherapy. Aiming at identifying broad spectrum agents for the treatment of COVID-19 but also to fight emergent coronaviruses, we focused on 3CLpro that is well conserved within this viral family. Here we present a high-throughput screening of more than 89,000 small molecules that led to the identification of a new chemotype, potent inhibitor of the SARS-CoV-2 3CLpro. The mechanism of inhibition, the interaction with the protease using NMR and X-Ray, the specificity against host cysteine proteases and promising antiviral properties in cells are reported.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Péptido Hidrolasas , Cisteína Endopeptidasas/metabolismo , Inhibidores de Proteasas/química , Proteasas 3C de Coronavirus , Antivirales/química
8.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055105

RESUMEN

Hepatitis C virus (HCV) relies on cellular lipid metabolism for its replication, and actively modulates lipogenesis and lipid trafficking in infected hepatocytes. This translates into an intracellular accumulation of triglycerides leading to liver steatosis, cirrhosis and hepatocellular carcinoma, which are hallmarks of HCV pathogenesis. While the interaction of HCV with hepatocyte metabolic pathways is patent, how viral proteins are able to redirect central carbon metabolism towards lipogenesis is unclear. Here, we report that the HCV protein NS5A activates the glucokinase (GCK) isoenzyme of hexokinases through its D2 domain (NS5A-D2). GCK is the first rate-limiting enzyme of glycolysis in normal hepatocytes whose expression is replaced by the hexokinase 2 (HK2) isoenzyme in hepatocellular carcinoma cell lines. We took advantage of a unique cellular model specifically engineered to re-express GCK instead of HK2 in the Huh7 cell line to evaluate the consequences of NS5A-D2 expression on central carbon and lipid metabolism. NS5A-D2 increased glucose consumption but decreased glycogen storage. This was accompanied by an altered mitochondrial respiration, an accumulation of intracellular triglycerides and an increased production of very-low density lipoproteins. Altogether, our results show that NS5A-D2 can reprogram central carbon metabolism towards a more energetic and glycolytic phenotype compatible with HCV needs for replication.


Asunto(s)
Glucoquinasa/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , Hepatocitos/metabolismo , Hepatocitos/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Glucógeno/metabolismo , Glucólisis , Interacciones Huésped-Patógeno , Humanos , Metabolismo de los Lípidos , Lipogénesis , Mitocondrias/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química
9.
Mol Ther ; 30(4): 1484-1499, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35007758

RESUMEN

Tau proteins aggregate into filaments in brain cells in Alzheimer's disease and related disorders referred to as tauopathies. Here, we used fragments of camelid heavy-chain-only antibodies (VHHs or single domain antibody fragments) targeting Tau as immuno-modulators of its pathologic seeding. A VHH issued from the screen against Tau of a synthetic phage-display library of humanized VHHs was selected for its capacity to bind Tau microtubule-binding domain, composing the core of Tau fibrils. This parent VHH was optimized to improve its biochemical properties and to act in the intra-cellular compartment, resulting in VHH Z70. VHH Z70 precisely binds the PHF6 sequence, known for its nucleation capacity, as shown by the crystal structure of the complex. VHH Z70 was more efficient than the parent VHH to inhibit in vitro Tau aggregation in heparin-induced assays. Expression of VHH Z70 in a cellular model of Tau seeding also decreased the aggregation-reporting fluorescence signal. Finally, intra-cellular expression of VHH Z70 in the brain of an established tauopathy mouse seeding model demonstrated its capacity to mitigate accumulation of pathological Tau. VHH Z70, by targeting Tau inside brain neurons, where most of the pathological Tau resides, provides an immunological tool to target the intra-cellular compartment in tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos de Dominio Único , Tauopatías , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Neuronas/metabolismo , Proteínas Represoras , Tauopatías/metabolismo , Proteínas tau/genética
10.
Hepatology ; 75(1): 170-181, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34387882

RESUMEN

BACKGROUND AND AIMS: Hepatitis E virus (HEV) is one of the most common causes of acute hepatitis worldwide. Its positive-strand RNA genome encodes three open reading frames (ORF). ORF1 is translated into a large protein composed of multiple domains and is known as the viral replicase. The RNA-dependent RNA polymerase (RDRP) domain is responsible for the synthesis of viral RNA. APPROACH AND RESULTS: Here, we identified a highly conserved α-helix located in the RDRP thumb subdomain. Nuclear magnetic resonance demonstrated an amphipathic α-helix extending from amino acids 1628 to 1644 of the ORF1 protein. Functional analyses revealed a dual role of this helix in HEV RNA replication and virus production, including assembly and release. Mutations on the hydrophobic side of the amphipathic α-helix impaired RNA replication and resulted in the selection of a second-site compensatory change in the RDRP palm subdomain. Other mutations enhanced RNA replication but impaired virus assembly and/or release. CONCLUSIONS: Structure-function analyses identified a conserved amphipathic α-helix in the thumb subdomain of the HEV RDRP with a dual role in viral RNA replication and infectious particle production. This study provides structural insights into a key segment of the ORF1 protein and describes the successful use of reverse genetics in HEV, revealing functional interactions between the RDRP thumb and palm subdomains. On a broader scale, it demonstrates that the HEV replicase, similar to those of other positive-strand RNA viruses, is also involved in virus production.


Asunto(s)
Virus de la Hepatitis E/patogenicidad , Hepatitis E/virología , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral/genética , Células Hep G2 , Virus de la Hepatitis E/genética , Humanos , Mutación , Conformación Proteica en Hélice alfa/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/ultraestructura , Relación Estructura-Actividad
11.
Angew Chem Int Ed Engl ; 60(48): 25428-25435, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34570415

RESUMEN

The main protease (3CLp) of the SARS-CoV-2, the causative agent for the COVID-19 pandemic, is one of the main targets for drug development. To be active, 3CLp relies on a complex interplay between dimerization, active site flexibility, and allosteric regulation. The deciphering of these mechanisms is a crucial step to enable the search for inhibitors. In this context, using NMR spectroscopy, we studied the conformation of dimeric 3CLp from the SARS-CoV-2 and monitored ligand binding, based on NMR signal assignments. We performed a fragment-based screening that led to the identification of 38 fragment hits. Their binding sites showed three hotspots on 3CLp, two in the substrate binding pocket and one at the dimer interface. F01 is a non-covalent inhibitor of the 3CLp and has antiviral activity in SARS-CoV-2 infected cells. This study sheds light on the complex structure-function relationships of 3CLp and constitutes a strong basis to assist in developing potent 3CLp inhibitors.


Asunto(s)
Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antivirales/química , Sitios de Unión , Chlorocebus aethiops , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/química , Evaluación Preclínica de Medicamentos , Pruebas de Sensibilidad Microbiana , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Multimerización de Proteína , SARS-CoV-2/química , Bibliotecas de Moléculas Pequeñas/química , Células Vero
12.
Biochemistry ; 60(24): 1896-1908, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34096272

RESUMEN

Feline immunodeficiency virus (FIV) is a veterinary infective agent for which there is currently no efficient drug available. Drugs targeting the lentivirus capsid are currently under development for the treatment of human immunodeficiency virus 1 (HIV-1). Here we describe a lead compound that interacts with the FIV capsid. This compound, 696, modulates the in vitro assembly of and stabilizes the assembled capsid protein. To decipher the mechanism of binding of this compound to the protein, we performed the first nuclear magnetic resonance (NMR) assignment of the FIV p24 capsid protein. Experimental NMR chemical shift perturbations (CSPs) observed after the addition of 696 enabled the characterization of a specific binding site for 696 on p24. This site was further analyzed by molecular modeling of the protein:compound interaction, demonstrating a strong similarity with the binding sites of existing drugs targeting the HIV-1 capsid protein. Taken together, we characterized a promising capsid-interacting compound with a low cost of synthesis, for which derivatives could lead to the development of efficient treatments for FIV infection. More generally, our strategy combining the NMR assignment of FIV p24 with NMR CSPs and molecular modeling will be useful for the analysis of future compounds targeting p24 in the quest to identify an efficient treatment for FIV.


Asunto(s)
Antivirales/farmacología , Bencimidazoles/farmacología , Productos del Gen gag/antagonistas & inhibidores , Virus de la Inmunodeficiencia Felina/efectos de los fármacos , Animales , Sitios de Unión , Cápside/metabolismo , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/metabolismo , Gatos , Productos del Gen gag/metabolismo , Virus de la Inmunodeficiencia Felina/metabolismo , Plomo/farmacología , Dominios Proteicos
14.
Mol Psychiatry ; 26(10): 5592-5607, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33144711

RESUMEN

Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Humanos , Proteínas de la Membrana , Proteínas de Neoplasias , Plasticidad Neuronal/genética , Neuronas , Factores de Riesgo
15.
FEBS J ; 288(6): 1918-1934, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32979285

RESUMEN

Protein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease. When Tau is phosphorylated by PKA (Tau-PKA), several phosphorylation sites are generated, including two known 14-3-3 binding sites, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners is still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long and disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3σ. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3σ interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2 : 1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the modulation of this interaction.


Asunto(s)
Proteínas 14-3-3/metabolismo , Enfermedad de Alzheimer/metabolismo , Multimerización de Proteína , Proteínas tau/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Sitios de Unión , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Exorribonucleasas/química , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , Serina/química , Serina/metabolismo , Resonancia por Plasmón de Superficie , Proteínas tau/química , Proteínas tau/genética
16.
Eur J Med Chem ; 200: 112440, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32505086

RESUMEN

Mycobacterium tuberculosis (M.tb), the etiologic agent of tuberculosis, remains the leading cause of death from a single infectious agent worldwide. The emergence of drug-resistant M.tb strains stresses the need for drugs acting on new targets. Mycolic acids are very long chain fatty acids playing an essential role in the architecture and permeability of the mycobacterial cell wall. Their biosynthesis involves two fatty acid synthase (FAS) systems. Among the four enzymes (MabA, HadAB/BC, InhA and KasA/B) of the FAS-II cycle, MabA (FabG1) remains the only one for which specific inhibitors have not been reported yet. The development of a new LC-MS/MS based enzymatic assay allowed the screening of a 1280 fragment-library and led to the discovery of the first small molecules that inhibit MabA activity. A fragment from the anthranilic acid series was optimized into more potent inhibitors and their binding to MabA was confirmed by 19F ligand-observed NMR experiments.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , ortoaminobenzoatos/farmacología , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Ácido Graso Sintasas/metabolismo , Estructura Molecular , Relación Estructura-Actividad , ortoaminobenzoatos/química
17.
Medchemcomm ; 10(10): 1796-1802, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31814953

RESUMEN

Protein-protein interactions (PPIs) are at the core of regulation mechanisms in biological systems and consequently became an attractive target for therapeutic intervention. PPIs involving the adapter protein 14-3-3 are representative examples given the broad range of partner proteins forming a complex with one of its seven human isoforms. Given the challenges represented by the nature of these interactions, fragment-based approaches offer a valid alternative for the development of PPI modulators. After having assembled a fragment set tailored on PPIs' modulation, we started a screening campaign on the sigma isoform of 14-3-3 adapter proteins. Through the use of both mono- and bi-dimensional nuclear magnetic resonance spectroscopy measurements, coupled with differential scanning fluorimetry, three fragment hits were identified. These molecules bind the protein at two different regions distant from the usual binding groove highlighting new possibilities for selective modulation of 14-3-3 complexes.

18.
ACS Chem Neurosci ; 10(9): 3997-4006, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31380615

RESUMEN

Tau is a neuronal protein linked to pathologies called tauopathies, including Alzheimer's disease. In Alzheimer's disease, tau aggregates into filaments, leading to the observation of intraneuronal fibrillary tangles. Molecular mechanisms resulting in tau aggregation and in tau pathology spreading through the brain regions are still not fully understood. New tools are thus needed to decipher tau pathways involved in the diseases. In this context, a family of novel single domain antibody fragments, or VHHs, directed against tau were generated and characterized. Among the selected VHHs obtained from screening of a synthetic library, a family of six VHHs shared the same CDR3 recognition loop and recognized the same epitope, located in the C-terminal domain of tau. Affinity parameters characterizing the tau/VHHs interaction were next evaluated using surface plasmon resonance spectroscopy. The equilibrium constants KD were in the micromolar range, but despite conservation of the CDR3 loop sequence, a range of affinities was observed for this VHH family. One of these VHHs, named F8-2, was additionally shown to bind tau upon expression in a neuronal cell line model. Optimization of VHH F8-2 by yeast two-hybrid allowed the generation of an optimized VHH family characterized by lower KD than that of the F8-2 wild-type counterpart, and recognizing the same epitope. The optimized VHHs can also be used as antibodies for detecting tau in transgenic mice brain tissues. These results validate the use of these VHHs for in vitro studies, but also their potential for in-cell expression and assays in mouse models, to explore the mechanisms underlying tau physiopathology.


Asunto(s)
Neuronas/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Fragmentos de Inmunoglobulinas/genética , Fragmentos de Inmunoglobulinas/metabolismo , Ratones , Ratones Transgénicos , Neuronas/patología
19.
J Biol Chem ; 294(35): 13171-13185, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31315928

RESUMEN

Implicated in numerous human diseases, intrinsically disordered proteins (IDPs) are dynamic ensembles of interconverting conformers that often contain many proline residues. Whether and how proline conformation regulates the functional aspects of IDPs remains an open question, however. Here, we studied the disordered domain 2 of nonstructural protein 5A (NS5A-D2) of hepatitis C virus (HCV). NS5A-D2 comprises a short structural motif (PW-turn) embedded in a proline-rich sequence, whose interaction with the human prolyl isomerase cyclophilin A (CypA) is essential for viral RNA replication. Using NMR, we show here that the PW-turn motif exists in a conformational equilibrium between folded and disordered states. We found that the fraction of conformers in the NS5A-D2 ensemble that adopt the structured motif is allosterically modulated both by the cis/trans isomerization of the surrounding prolines that are CypA substrates and by substitutions conferring resistance to cyclophilin inhibitor. Moreover, we noted that this fraction is directly correlated with HCV RNA replication efficiency. We conclude that CypA can fine-tune the dynamic ensemble of the disordered NS5A-D2, thereby regulating viral RNA replication efficiency.


Asunto(s)
Ciclofilina A/metabolismo , ARN Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Regulación Alostérica , Ciclofilina A/genética , Ciclofilina A/aislamiento & purificación , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , ARN Viral/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/aislamiento & purificación , Replicación Viral
20.
Biomol NMR Assign ; 13(1): 103-107, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30377945

RESUMEN

14-3-3 proteins are a group of seven dimeric adapter proteins that exert their biological function by interacting with hundreds of phosphorylated proteins, thus influencing their sub-cellular localization, activity or stability in the cell. Due to this remarkable interaction network, 14-3-3 proteins have been associated with several pathologies and the protein-protein interactions (PPIs) established with a number of partners are now considered promising drug targets. The activity of 14-3-3 proteins is often isoform specific and to our knowledge only one out of seven isoforms, 14-3-3[Formula: see text], has been assigned. Despite the availability of the crystal structures of all seven isoforms of 14-3-3, the additional NMR assignments of 14-3-3 proteins are important for both biological mechanism studies and chemical biology approaches. Herein, we present a robust backbone assignment of 14-3-3σ, which will allow advances in the discovery of potential therapeutic compounds. This assignment is now being applied to the discovery of both inhibitors and stabilizers of 14-3-3 PPIs.


Asunto(s)
Proteínas 14-3-3/química , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...