Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurol ; 269(6): 2892-2909, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35039902

RESUMEN

Over the past two decades, animal models of Parkinson's disease (PD) have helped to determine the plausible underlying mechanism of levo-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia following L-DOPA treatment. However, our understanding of the mechanisms related to this phenomenon remains incomplete. The purpose of this manuscript is to provide a comprehensive review of treatment protocols used for assessing the occurrence of L-DOPA-induced dyskinesia, L-DOPA absorption, distribution, drug/food interaction, and discuss current strategies and future directions. This review offers a historical perspective using L-DOPA in animal models of PD and the occurrence of L-DOPA-induced dyskinesia.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Animales , Antiparkinsonianos/efectos adversos , Modelos Animales de Enfermedad , Dopamina , Discinesia Inducida por Medicamentos/etiología , Humanos , Levodopa/efectos adversos , Enfermedad de Parkinson/tratamiento farmacológico
3.
NPJ Parkinsons Dis ; 7(1): 76, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408150

RESUMEN

Pathophysiological damages and loss of function of dopamine neurons precede their demise and contribute to the early phases of Parkinson's disease. The presence of aberrant intracellular pathological inclusions of the protein α-synuclein within ventral midbrain dopaminergic neurons is one of the cardinal features of Parkinson's disease. We employed molecular biology, electrophysiology, and live-cell imaging to investigate how excessive α-synuclein expression alters multiple characteristics of dopaminergic neuronal dynamics and dopamine transmission in cultured dopamine neurons conditionally expressing GCaMP6f. We found that overexpression of α-synuclein in mouse (male and female) dopaminergic neurons altered neuronal firing properties, calcium dynamics, dopamine release, protein expression, and morphology. Moreover, prolonged exposure to the D2 receptor agonist, quinpirole, rescues many of the alterations induced by α-synuclein overexpression. These studies demonstrate that α-synuclein dysregulation of neuronal activity contributes to the vulnerability of dopaminergic neurons and that modulation of D2 receptor activity can ameliorate the pathophysiology. These findings provide mechanistic insights into the insidious changes in dopaminergic neuronal activity and neuronal loss that characterize Parkinson's disease progression with significant therapeutic implications.

4.
NPJ Parkinsons Dis ; 7(1): 62, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285243

RESUMEN

Most, if not all, peripheral immune cells in humans and animals express tyrosine hydroxylase (TH), the rate limiting enzyme in catecholamine synthesis. Since TH is typically studied in the context of brain catecholamine signaling, little is known about changes in TH production and function in peripheral immune cells. This knowledge gap is due, in part, to the lack of an adequately sensitive assay to measure TH in immune cells expressing lower TH levels compared to other TH expressing cells. Here, we report the development of a highly sensitive and reproducible Bio-ELISA to quantify picogram levels of TH in multiple model systems. We have applied this assay to monocytes isolated from blood of persons with Parkinson's disease (PD) and to age-matched, healthy controls. Our study unexpectedly revealed that PD patients' monocytes express significantly higher levels of TH protein in peripheral monocytes relative to healthy controls. Tumor necrosis factor (TNFα), a pro-inflammatory cytokine, has also been shown to be increased in the brains and peripheral circulation in human PD, as well as in animal models of PD. Therefore, we investigated a possible connection between higher levels of TH protein and the known increase in circulating TNFα in PD. Monocytes isolated from healthy donors were treated with TNFα or with TNFα in the presence of an inhibitor. Tissue plasminogen activator (TPA) was used as a positive control. We observed that TNFα stimulation increased both the number of TH+ monocytes and the quantity of TH per monocyte, without increasing the total numbers of monocytes. These results revealed that TNFα could potentially modify monocytic TH production and serve a regulatory role in peripheral immune function. The development and application of a highly sensitive assay to quantify TH in both human and animal cells will provide a novel tool for further investigating possible PD immune regulatory pathways between brain and periphery.

5.
J Neurosci ; 41(25): 5453-5470, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-33980544

RESUMEN

Dopaminergic neurons of the substantia nigra pars compacta (SNC) and ventral tegmental area (VTA) exhibit spontaneous firing activity. The dopaminergic neurons in these regions have been shown to exhibit differential sensitivity to neuronal loss and psychostimulants targeting dopamine transporter. However, it remains unclear whether these regional differences scale beyond individual neuronal activity to regional neuronal networks. Here, we used live-cell calcium imaging to show that network connectivity greatly differs between SNC and VTA regions with higher incidence of hub-like neurons in the VTA. Specifically, the frequency of hub-like neurons was significantly lower in SNC than in the adjacent VTA, consistent with the interpretation of a lower network resilience to SNC neuronal loss. We tested this hypothesis, in DAT-cre/loxP-GCaMP6f mice of either sex, when activity of an individual dopaminergic neuron is suppressed, through whole-cell patch clamp electrophysiology, in either SNC or VTA networks. Neuronal loss in the SNC increased network clustering, whereas the larger number of hub-neurons in the VTA overcompensated by decreasing network clustering in the VTA. We further show that network properties are regulatable via a dopamine transporter but not a D2 receptor dependent mechanism. Our results demonstrate novel regulatory mechanisms of functional network topology in dopaminergic brain regions.SIGNIFICANCE STATEMENT In this work, we begin to untangle the differences in complex network properties between the substantia nigra pars compacta (SNC) and VTA, that may underlie differential sensitivity between regions. The methods and analysis employed provide a springboard for investigations of network topology in multiple deep brain structures and disorders.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/fisiología , Red Nerviosa/fisiología , Porción Compacta de la Sustancia Negra/fisiología , Área Tegmental Ventral/fisiología , Animales , Femenino , Masculino , Ratones
6.
Glia ; 68(11): 2228-2245, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32275335

RESUMEN

During aging humans lose midbrain dopamine neurons, but not all dopamine regions exhibit vulnerability to neurodegeneration. Microglia maintain tissue homeostasis and neuronal support, but microglia become senescent and likely lose some of their functional abilities. Since aging is the greatest risk factor for Parkinson's disease, we hypothesized that aging-related changes in microglia and neurons occur in the vulnerable substantia nigra pars compacta (SNc) but not the ventral tegmental area (VTA). We conducted stereological analyses to enumerate microglia and dopaminergic neurons in the SNc and VTA of 1-, 6-, 9-, 18-, and 24-month-old C57BL/J6 mice using sections double-stained with tyrosine hydroxylase (TH) and Iba1. Both brain regions show an increase in microglia with aging, whereas numbers of TH+ cells show no significant change after 9 months of age in SNc and 6 months in VTA. Morphometric analyses reveal reduced microglial complexity and projection area while cell body size increases with aging. Contact sites between microglia and dopaminergic neurons in both regions increase with aging, suggesting increased microglial support/surveillance of dopamine neurons. To assess neurotrophin expression in dopaminergic neurons, BDNF and TH mRNA were quantified. Results show that the ratio of BDNF to TH decreases in the SNc, but not the VTA. Gait analysis indicates subtle, aging-dependent changes in gait indices. In conclusion, increases in microglial cell number, ratio of microglia to dopamine neurons, and contact sites suggest that innate biological mechanisms compensate for the aging-dependent decline in microglia morphological complexity (senescence) to ensure continued neuronal support in the SNc and VTA.


Asunto(s)
Microglía , Sustancia Negra , Área Tegmental Ventral , Animales , Factor Neurotrófico Derivado del Encéfalo , Neuronas Dopaminérgicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
7.
PLoS One ; 14(9): e0222957, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31536584

RESUMEN

The ventral midbrain supports a variety of functions through the heterogeneity of neurons. Dopaminergic and GABA neurons within this region are particularly susceptible targets of amphetamine-class psychostimulants such as methamphetamine. While this has been evidenced through single-neuron methods, it remains unclear whether and to what extent the local neuronal network is affected and if so, by which mechanisms. Both GABAergic and dopaminergic neurons were heavily featured within the primary ventral midbrain network model system. Using spontaneous calcium activity, our data suggest methamphetamine decreased total network output via a D2 receptor-dependent manner. Over culture duration, functional connectivity between neurons decreased significantly but was unaffected by methamphetamine. However, across culture duration, exposure to methamphetamine significantly altered changes in network assortativity. Here we have established primary ventral midbrain networks culture as a viable model system that reveals specific changes in network activity, connectivity, and topology modulation by methamphetamine. This network culture system enables control over the type and number of neurons that comprise a network and facilitates detection of emergent properties that arise from the specific organization. Thus, the multidimensional properties of methamphetamine can be unraveled, leading to a better understanding of its impact on the local network structure and function.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Metanfetamina/farmacología , Red Nerviosa/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Animales , Células Cultivadas , Estimulantes del Sistema Nervioso Central/farmacología , Neuronas Dopaminérgicas/fisiología , Femenino , Neuronas GABAérgicas/fisiología , Masculino , Ratones Endogámicos C57BL , Modelos Neurológicos , Red Nerviosa/citología , Red Nerviosa/fisiología , Neuroimagen/métodos , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/fisiología , Área Tegmental Ventral/citología , Área Tegmental Ventral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...