Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 12: 1106369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726645

RESUMEN

Naturally acquired antibodies may reduce the transmission of Plasmodium gametocytes to mosquitoes. Here, we investigated associations between antibody prevalence and P. vivax infectivity to mosquitoes. A total of 368 microscopy confirmed P. vivax symptomatic patients were passively recruited from health centers in Ethiopia and supplemented with 56 observations from asymptomatic P. vivax parasite carriers. Direct membrane feeding assays (DMFA) were performed to assess mosquito infectivity; for selected feeds these experiments were also performed after replacing autologous plasma with malaria naïve control serum (n=61). The prevalence of antibodies against 6 sexual stage antigens (Pvs47, Pvs48/45, Pvs230, PvsHAP2, Pvs25 and PvCelTOS) and an array of asexual antigens was determined by ELISA and multiplexed bead-based assays. Gametocyte (ρ< 0.42; p = 0.0001) and parasite (ρ = 0.21; p = 0.0001) densities were positively associated with mosquito infection rates. Antibodies against Pvs47, Pvs230 and Pvs25 were associated with 23 and 34% reductions in mosquito infection rates (p<0.0001), respectively. Individuals who showed evidence of transmission blockade in serum-replacement DMFAs (n=8) were significantly more likely to have PvsHAP2 or Pvs47 antibodies. Further studies may demonstrate causality for the observed associations, improve our understanding of the natural transmission of P. vivax and support vaccine development.


Asunto(s)
Anopheles , Malaria Vivax , Malaria , Animales , Humanos , Plasmodium vivax , Anopheles/parasitología , Malaria Vivax/prevención & control , Anticuerpos Antiprotozoarios , Plasmodium falciparum
2.
Inflamm Res ; 68(9): 775-785, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31227842

RESUMEN

OBJECTIVE AND DESIGN: To determine whether ER stress affects the inhibitory pathways of the human immune system, particularly the immunosuppressive effect of IL-10 on macrophages. MATERIAL OR SUBJECTS: In vitro stimulation of human monocyte-derived macrophages. TREATMENT: Cells were stimulated with TLR ligands and IL-10, while ER stress was induced using thapsigargin or tunicamycin. METHODS: mRNA expression was determined using qPCR, while cytokine protein production was measured using ELISA. Protein expression of receptors and transcription factors was determined using flow cytometry. Student's t test was used for statistics. RESULTS: While under normal conditions IL-10 potently suppresses pro-inflammatory cytokine production by LPS-stimulated macrophages, we demonstrate that ER stress counteracts the immunosuppressive effects of IL-10, leading to increased pro-inflammatory cytokine production. We identified that ER stress directly interferes with IL-10R signaling by reducing STAT3 phosphorylation on Tyr705, which thereby inhibits the expression of SOCS3. Moreover, we show that ER stress also inhibits STAT3 activation induced by other receptors such as IL-6R. CONCLUSIONS: Combined, these data uncover a new general mechanism by which ER stress promotes inflammation. Considering its potential involvement in the pathogenesis of diseases such as Crohn's disease and spondyloarthritis, targeting of this mechanism may provide new opportunities to counteract inflammation.


Asunto(s)
Estrés del Retículo Endoplásmico , Interleucina-10/farmacología , Macrófagos/citología , Factor de Transcripción STAT3/metabolismo , Humanos , Terapia de Inmunosupresión , Inflamación , Ligandos , Lipopolisacáridos/farmacología , Monocitos/citología , Fosforilación , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal , Tapsigargina/farmacología , Tunicamicina/farmacología
3.
Front Immunol ; 10: 739, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024565

RESUMEN

Antigen-presenting cells (APCs) such as dendritic cells (DCs) are crucial for initiation of adequate inflammatory responses, which critically depends on the cooperated engagement of different receptors. In addition to pattern recognition receptors (PRRs), Fc gamma receptors (FcγRs) have recently been identified to be important in induction of inflammation by DCs. FcγRs that recognize IgG immune complexes, which are formed upon opsonization of pathogens, induce pro-inflammatory cytokine production through cross-talk with PRRs such as Toll-like receptors (TLRs). While the physiological function of FcγR-TLR cross-talk is to provide protective immunity against invading pathogens, undesired activation of FcγR-TLR cross-talk, e.g., by autoantibodies, also plays a major role in the development of chronic inflammatory disorders such as rheumatoid arthritis (RA). Yet, the molecular mechanisms of FcγR-TLR cross-talk are still largely unknown. Here, we identified that FcγR-TLR cross-talk-induced cytokine production critically depends on activation of the transcription factor interferon regulatory factor 5 (IRF5), which results from induction of two different pathways that converge on IRF5 activation. First, TLR stimulation induced phosphorylation of TBK1/IKKε, which is required for IRF5 phosphorylation and subsequent activation. Second, FcγR stimulation induced nuclear translocation of IRF5, which is essential for gene transcription by IRF5. We identified that IRF5 activation by FcγR-TLR cross-talk amplifies pro-inflammatory cytokine production by increasing cytokine gene transcription, but also by synergistically inducing glycolytic reprogramming, which is another essential process for induction of inflammatory responses by DCs. Combined, here we identified IRF5 as a pivotal component of FcγR-TLR cross-talk in human APCs. These data may provide new potential targets to suppress chronic inflammation in autoantibody-associated diseases that are characterized by undesired or excessive FcγR-TLR cross-talk, such as RA, systemic sclerosis, and systemic lupus erythematous.


Asunto(s)
Células Dendríticas/inmunología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Receptores de IgG/metabolismo , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Transporte Activo de Núcleo Celular , Células Dendríticas/metabolismo , Glucólisis/inmunología , Humanos , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Técnicas In Vitro , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Modelos Inmunológicos , Monocitos/inmunología , Monocitos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Cross-Talk/inmunología , Transcripción Genética
4.
Cell Mol Life Sci ; 76(6): 1041-1055, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30498997

RESUMEN

The prevailing concept regarding the immunological function of immunoglobulin A (IgA) is that it binds to and neutralizes pathogens to prevent infection at mucosal sites of the body. However, recently, it has become clear that in humans IgA is also able to actively contribute to the initiation of inflammation, both at mucosal and non-mucosal sites. This additional function of IgA is initiated by the formation of immune complexes, which trigger Fc alpha Receptor I (FcαRI) to synergize with various other receptors to amplify inflammatory responses. Recent findings have demonstrated that co-stimulation of FcαRI strongly affects pro-inflammatory cytokine production by various myeloid cells, including different dendritic cell subsets, macrophages, monocytes, and Kupffer cells. FcαRI-induced inflammation plays a crucial role in orchestrating human host defense against pathogens, as well as the generation of tissue-specific immunity. In addition, FcαRI-induced inflammation is suggested to be involved in the pathogenesis of various chronic inflammatory disorders, including inflammatory bowel disease, celiac disease, and rheumatoid arthritis. Combined, IgA-induced inflammation may be used to either promote inflammatory responses, e.g. in the context of cancer therapy, but may also provide new therapeutic targets to counteract chronic inflammation in the context of various chronic inflammatory disorders.


Asunto(s)
Antígenos/inmunología , Inmunoglobulina A/inmunología , Inflamación/inmunología , Membrana Mucosa/inmunología , Antígenos/metabolismo , Antígenos CD/inmunología , Antígenos CD/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Inmunoglobulina A/metabolismo , Modelos Inmunológicos , Membrana Mucosa/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Unión Proteica , Receptores Fc/inmunología , Receptores Fc/metabolismo
5.
Nat Commun ; 9(1): 863, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29491406

RESUMEN

CD103+ dendritic cells (DC) are crucial for regulation of intestinal tolerance in humans. However, upon infection of the lamina propria this tolerogenic response is converted to an inflammatory response. Here we show that immunoglobulin A (IgA) immune complexes (IgA-IC), which are present after bacterial infection of the lamina propria, are important for the induction of inflammation by the human CD103+SIRPα+ DC subset. IgA-IC, by recognition through FcαRI, selectively amplify the production of proinflammatory cytokines TNF, IL-1ß and IL-23 by human CD103+ DCs. These cells then enhance inflammation by promoting Th17 responses and activating human intestinal innate lymphoid cells 3. Moreover, FcαRI-induced cytokine production is orchestrated via upregulation of cytokine translation and caspase-1 activation, which is dependent on glycolytic reprogramming mediated by kinases Syk, PI3K and TBK1-IKKε. Our data suggest that the formation of IgA-IC in the human intestine provides an environmental cue for the conversion of a tolerogenic to an inflammatory response.


Asunto(s)
Antígenos CD/inmunología , Células Dendríticas/inmunología , Cadenas alfa de Integrinas/inmunología , Intestinos/inmunología , Receptores Fc/inmunología , Reprogramación Celular , Glucólisis , Humanos , Inmunoglobulina A/inmunología , Interleucina-1beta/inmunología , Interleucina-23/inmunología , Intestinos/citología , Células Th17/inmunología
6.
J Immunol ; 199(12): 4124-4131, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29118246

RESUMEN

IgA is predominantly recognized to play an important role in host defense at mucosal sites, where it prevents invasion of pathogens by neutralization. Although it has recently become clear that IgA also mediates other immunological processes, little remains known about the potential of IgA to actively contribute to induction of inflammation, particularly in nonmucosal organs and tissues. In this article, we provide evidence that immune complex formation of serum IgA plays an important role in orchestration of inflammation in response to pathogens at various nonmucosal sites by eliciting proinflammatory cytokines by human macrophages, monocytes, and Kupffer cells. We show that opsonization of bacteria with serum IgA induced cross-talk between FcαRI and different TLRs, leading to cell type-specific amplification of proinflammatory cytokines, such as TNF-α, IL-1ß, IL-6, and IL-23. Furthermore, we demonstrate that the increased protein production of cytokines was regulated at the level of gene transcription, which was dependent on activation of kinases Syk and PI3K. Taken together, these data demonstrate that the immunological function of IgA is substantially more extensive than previously considered and suggest that serum IgA-induced inflammation plays an important role in orchestrating host defense by different cell types in nonmucosal tissues, including the liver, skin, and peripheral blood.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Antígenos CD/inmunología , Citocinas/biosíntesis , Inmunoglobulina A/inmunología , Inflamación/inmunología , Macrófagos del Hígado/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Receptor Cross-Talk/inmunología , Receptores Fc/inmunología , Receptores Toll-Like/inmunología , Citocinas/genética , Activación Enzimática , Humanos , Inmunoglobulina A/sangre , Inflamación/etiología , Proteínas Opsoninas/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Quinasa Syk/metabolismo , Transcripción Genética
7.
Immunobiology ; 220(2): 193-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25108563

RESUMEN

Myeloid antigen-presenting cells (APCs) tailor immune responses to the pathogen involved through the production of specific pro- and anti-inflammatory cytokines. It is becoming increasingly clear that the ultimate cytokine profile produced by myeloid APCs crucially depends on interaction between multiple pathogen recognizing receptors. In this respect, we recently identified an important role for cross-talk between Fc gamma receptor IIa (FcγRIIa) and Toll-like receptors (TLRs) in human dendritic cells (DCs), which induces anti-bacterial immunity through the selective induction of TNFα and Th17-promoting cytokines. Here, we show that FcγRIIa-TLR cross-talk is not restricted to DCs, but is a common feature of various human myeloid APC subsets including monocytes and macrophages. Interestingly, FcγRIIa-TLR cross-talk in monocytes resulted in the induction of a cytokine profile distinct from that in DCs and macrophages, indicating that FcγRIIa stimulation induces cell-type and tissue specific responses. Surprisingly, we show that the FCGR2A H131R single nucleotide polymorphism (SNP), which is known to greatly affect FcγRIIa-mediated uptake of IgG2-opsonized bacteria, did not affect FcγRIIa-dependent cytokine production, indicating that these processes are differently regulated. In addition, we demonstrate that FcγRIIa selectively synergized with TLRs, IL-1R, and IFNγR, but did not affect cytokine production induced by other receptors such as C-type lectin receptor Dectin-1. Taken together, these data demonstrate that FcγRIIa-dependent modulation of cytokine production is more widespread than previously considered, and indicate that cross-talk of FcγRIIa with various receptors and in multiple cell types contributes to the induction of pathogen and tissue-specific immunity.


Asunto(s)
Citocinas/biosíntesis , Células Mieloides/inmunología , Células Mieloides/metabolismo , Receptores de IgG/metabolismo , Receptores de Interferón/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/metabolismo , Complejo Antígeno-Anticuerpo/inmunología , Complejo Antígeno-Anticuerpo/metabolismo , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Inmunomodulación , Leucocitos Mononucleares , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Especificidad de Órganos , Polimorfismo de Nucleótido Simple , Receptor Cross-Talk , Receptores de IgG/genética , Transducción de Señal
8.
Nat Commun ; 5: 5444, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25392121

RESUMEN

M2 macrophages suppress inflammation in numerous disorders, including tumour formation, infection and obesity. However, the exact role of M2 macrophages in the context of several other diseases is still largely undefined. We here show that human M2 macrophages promote inflammation instead of suppressing inflammation on simultaneous exposure to complexed IgG (c-IgG) and TLR ligands, as occurs in the context of diseases such as rheumatoid arthritis (RA). c-IgG-TLR ligand co-stimulation of M2 macrophages selectively amplifies production of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 and promotes Th17 responses, which all play a critical role in RA pathology. Induction of pro-inflammatory cytokines on c-IgG co-stimulation mainly depends on Fc gamma receptor IIa (FcγRIIa), which selectively amplifies cytokine gene transcription and induces caspase-1 activation. These data indicate that FcγR-TLR cross-talk may be targeted for treatment to attenuate inflammation in RA, by restoring the anti-inflammatory function of M2 macrophages.


Asunto(s)
Inflamación/fisiopatología , Interleucina-1beta/fisiología , Interleucina-6/fisiología , Macrófagos/fisiología , Receptor Cross-Talk/fisiología , Receptores de IgG/fisiología , Factor de Necrosis Tumoral alfa/fisiología , Caspasa 1/metabolismo , Activación Enzimática/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Macrófagos/metabolismo , Receptores de IgG/metabolismo , Células Th17/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis
9.
Cell Microbiol ; 15(10): 1753-65, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23601501

RESUMEN

Neutrophil recruitment is essential in clearing pneumococcal infections. The first step in neutrophil extravasation involves the interaction between P-selectin on activated endothelium and P-Selectin Glycoprotein 1 (PSGL-1) on neutrophils. Here, we identify pneumococcal Zinc metalloproteinase C as a potent inhibitor of PSGL-1. ZmpC degrades the N-terminal domain of PSGL-1, thereby disrupting the initial rolling of neutrophils on activated human umbilical vein endothelial cells. Furthermore, mice infected with wild-type strain in the model of pneumococcal pneumonia showed lower lungs neutrophil infiltration compare to animals infected with ZmpC mutant. In addition, we confirmed the association of zmpC with serotype 8 and 11A and found it to be associated with serotype 33F as well. In conclusion, wereport PSGL-1 as a novel target for ZmpC and show that ZmpC inhibits neutrophil extravasation during pneumococcal pneumonia.


Asunto(s)
Interacciones Huésped-Patógeno , Evasión Inmune , Glicoproteínas de Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Neutrófilos/inmunología , Streptococcus pneumoniae/fisiología , Animales , Adhesión Celular , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Eliminación de Gen , Humanos , Pulmón/inmunología , Pulmón/patología , Metaloendopeptidasas/genética , Ratones , Neumonía Neumocócica/patología , Proteolisis , Streptococcus pneumoniae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...