RESUMEN
BACKGROUND: Correct classification of estrogen receptor (ER) status is essential for prognosis and treatment planning in patients with breast cancer (BC). Therefore, it is recommended to sample tumor tissue from an accessible metastasis. However, ER expression can show intra- and intertumoral heterogeneity. 16α-[18F]fluoroestradiol ([18F]FES) Positron Emission Tomography/Computed Tomography (PET/CT) allows noninvasive whole-body (WB) identification of ER distribution and is usually performed as a single static image 60 min after radiotracer injection. Using dynamic whole-body (D-WB) PET imaging, we examine [18F]FES kinetics and explore whether Patlak parametric images ( K i ) are quantitative and improve lesion visibility. RESULTS: This prospective study included eight patients with metastatic ER-positive BC scanned using a D-WB PET acquisition protocol. The kinetics of [18F]FES were best characterized by the irreversible two-tissue compartment model in tumor lesions and in the majority of organ tissues. K i values from Patlak parametric images correlated with K i values from the full kinetic analysis, r2 = 0.77, and with the semiquantitative mean standardized uptake value (SUVmean), r2 = 0.91. Furthermore, parametric K i images had the highest target-to-background ratio (TBR) in 162/164 metastatic lesions and the highest contrast-to-noise ratio (CNR) in 99/164 lesions compared to conventional SUV images. TBR was 2.45 (95% confidence interval (CI): 2.25-2.68) and CNR 1.17 (95% CI: 1.08-1.26) times higher in K i images compared to SUV images. These quantitative differences were seen as reduced background activity in the K i images. CONCLUSION: [18F]FES uptake is best described by an irreversible two-tissue compartment model. D-WB [18F]FES PET/CT scans can be used for direct reconstruction of parametric K i images, with superior lesion visibility and K i values comparable to K i values found from full kinetic analyses. This may aid correct ER classification and treatment decisions. Trial registration ClinicalTrials.gov: NCT04150731, https://clinicaltrials.gov/study/NCT04150731.
RESUMEN
Background: Nonmotor symptoms, including constipation and dysphagia, are very common in Parkinson's disease (PD) and Lewy pathology is widespread in the gastrointestinal tract, particularly in the lower esophagus. Constipation and REM sleep behavior disorder (RBD) may present prior to clinical diagnosis. Yet, little is known about esophageal dysfunction and its connection to constipation in early PD. Objective: This study aimed to investigate esophageal and colonic transit in early moderate PD and to study correlations between symptoms and objective measures. Methods: Thirty early moderate PD patients and 28 healthy controls (HC) were included in this cross-sectional study. Esophageal transit times were determined by esophageal scintigraphy and colonic transit times by CT after radio-opaque marker ingestion. Olfaction tests, clinical evaluation, and nonmotor questionnaires were also performed. Results: Distal esophageal transit times and colonic transit times were both significantly prolonged in the PD group compared to HC (p < 0.05 andp < 0.01, respectively) and a moderate-strong positive correlation was found between colonic transit time (CTT) and RBDSQ score (r = 0.61,p < 0.001). Significant correlations were also found between CTT and SCOPA-AUT scores as well as between CTT and ROME III functional constipation scores. Conclusion: Colonic transit correlates with probable RBD and is more severely prolonged in early moderate PD than is the distal esophageal transit time.
RESUMEN
Absent Skin Conductance Response (SCR) in pathological gambling (PG) may relate to dopaminergic mechanisms. We recruited equal numbers of PG subjects and healthy control (HC) subjects, and then tested the claim that SCR is less conditioned by dopaminergic activity in PG subjects. During active gambling, SCR differed in PG and HC subjects (P < 0.05), but positron emission tomography revealed the same dopamine receptor availability. However, highly sensation-seeking (HS) PG subjects had lower dopamine receptor availability (P < 0.0001) in the baseline, compared to normal sensation-seeking (NS) PG subjects. We find that HS versus NS controls had the same observation of significant increase of binding potential (BP(ND)) in high compared to normal sensation seekers. In both groups, PG and HC, highly sensation-seeking subjects had significant increase of receptor availability in striatum, compared to normally sensation-seeking subjects, separately (P < 0.05 and P = 0.02, respectively) and together (P < 0.0005). We conclude that SCR is less conditioned by dopaminergic activity in highly sensation-seeking subjects, regardless of PG status.
Asunto(s)
Conducta Exploratoria/fisiología , Respuesta Galvánica de la Piel/fisiología , Juego de Azar/fisiopatología , Receptores Dopaminérgicos/fisiología , Transmisión Sináptica/fisiología , Adulto , Dopamina/metabolismo , Juego de Azar/psicología , Humanos , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Unión Proteica/fisiología , Adulto JovenRESUMEN
Hyperoxic therapy for cerebral ischemia reduces cerebral blood flow (CBF) principally from the vasoconstrictive effect of oxygen on cerebral arterioles. Based on a recent study in normal volunteers, we now claim that the vasodilatory effect of carbon dioxide predominates when 5% CO(2) is added to inhaled oxygen (the mixture known as carbogen). In the present study, we measured CBF by positron emission tomography (PET) during inhalation of test gases (O(2), carbogen, and atmospheric air) in healthy volunteers (n = 10) and in patients with occlusive carotid artery disease (n = 6). Statistical comparisons by an additive ANOVA model showed that carbogen significantly increased CBF by 7.51 + or - 1.62 ml/100 g/min while oxygen tended to reduce it by -3.22 + or - 1.62 ml/100 g/min. A separate analysis of the hemisphere contralateral to the hypoperfused hemisphere showed that carbogen significantly increased CBF by 8.90 + or - 2.81 ml/100 g/min whereas oxygen inhalation produced no reliable change in CBF (-1.15 + or - 2.81 ml/100 g/min). In both patients and controls, carbogen was as efficient as oxygen in increasing Sa(O2) or PaO(2) values. The study demonstrates that concomitant increases of CBF and Sa(O2) are readily obtained with carbogen, while oxygen increases only Sa(O2). Thus, carbogen improves oxygen transport to brain tissue more efficiently than oxygen alone. Further studies with more subjects are, however, needed to investigate the applicability of carbogen for long-term inhalation and to assess its therapeutic benefits in acute stroke patients.