Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464092

RESUMEN

Human cytomegalovirus (HCMV) encodes four viral Fc-gamma receptors (vFcγRs) that counteract antibody-mediated activation in vitro , but their role in infection and pathogenesis is unknown. To examine the in vivo function of vFcγRs in animal hosts closely related to humans, we identified and characterized vFcγRs encoded by rhesus CMV (RhCMV). We demonstrate that Rh05, Rh152/151 and Rh173 represent the complete set of RhCMV vFcγRs, each displaying functional similarities to their respective HCMV orthologs with respect to antagonizing host FcγR activation in vitro . When RhCMV-naïve rhesus macaques were infected with vFcγR-deleted RhCMV, peak plasma viremia levels and anti-RhCMV antibody responses were comparable to wildtype infections. However, the duration of plasma viremia was significantly shortened in immunocompetent, but not in CD4+ T cell-depleted animals. Since vFcγRs were not required for superinfection, we conclude that vFcγRs delay control by virus-specific adaptive immune responses, particularly antibodies, during primary infection.

2.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464179

RESUMEN

Background: RhCMV/SIV vaccines protect ∼59% of vaccinated rhesus macaques against repeated limiting-dose intra-rectal exposure with highly pathogenic SIVmac239M, but the exact mechanism responsible for the vaccine efficacy is not known. It is becoming evident that complex interactions exist between gut microbiota and the host immune system. Here we aimed to investigate if the rhesus gut microbiome impacts RhCMV/SIV vaccine-induced protection. Methods: Three groups of 15 rhesus macaques naturally pre-exposed to RhCMV were vaccinated with RhCMV/SIV vaccines. Rectal swabs were collected longitudinally both before SIV challenge (after vaccination) and post challenge and were profiled using 16S rRNA based microbiome analysis. Results: We identified ∼2,400 16S rRNA amplicon sequence variants (ASVs), representing potential bacterial species/strains. Global gut microbial profiles were strongly associated with each of the three vaccination groups, and all animals tended to maintain consistent profiles throughout the pre-challenge phase. Despite vaccination group differences, using newly developed compositional data analysis techniques we identified a common gut microbial signature predictive of vaccine protection outcome across the three vaccination groups. Part of this microbial signature persisted even after SIV challenge. We also observed a strong correlation between this microbial signature and an early signature derived from whole blood transcriptomes in the same animals. Conclusions: Our findings indicate that changes in gut microbiomes are associated with RhCMV/SIV vaccine-induced protection and early host response to vaccination in rhesus macaques.

3.
bioRxiv ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37398229

RESUMEN

Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of neonatal neurological impairment but essential virological determinants of transplacental CMV transmission remain unclear. The pentameric complex (PC), composed of five subunits, glycoproteins H (gH), gL, UL128, UL130, and UL131A, is essential for efficient entry into non-fibroblast cells in vitro . Based on this role in cell tropism, the PC is considered a possible target for CMV vaccines and immunotherapies to prevent cCMV. To determine the role of the PC in transplacental CMV transmission in a non-human primate model of cCMV, we constructed a PC-deficient rhesus CMV (RhCMV) by deleting the homologues of the HCMV PC subunits UL128 and UL130 and compared congenital transmission to PC-intact RhCMV in CD4+ T cell-depleted or immunocompetent RhCMV-seronegative, pregnant rhesus macaques (RM). Surprisingly, we found that the transplacental transmission rate was similar for PC-intact and PC-deleted RhCMV based on viral genomic DNA detection in amniotic fluid. Moreover, PC-deleted and PC-intact RhCMV acute infection led to similar peak maternal plasma viremia. However, there was less viral shedding in maternal urine and saliva and less viral dissemination in fetal tissues in the PC-deleted group. As expected, dams inoculated with PC-deleted RhCMV demonstrated lower plasma IgG binding to PC-intact RhCMV virions and soluble PC, as well as reduced neutralization of PC-dependent entry of the PC-intact RhCMV isolate UCD52 into epithelial cells. In contrast, binding to gH expressed on the cell surface and neutralization of entry into fibroblasts by the PC-intact RhCMV was higher for dams infected with PC-deleted RhCMV compared to those infected with PC-intact RhCMV. Our data demonstrates that the PC is dispensable for transplacental CMV infection in our non-human primate model. One Sentence Summary: Congenital CMV transmission frequency in seronegative rhesus macaques is not affected by the deletion of the viral pentameric complex.

5.
Trends Immunol ; 44(4): 287-304, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894436

RESUMEN

The initial development of cytomegalovirus (CMV) as a vaccine vector for HIV/simian immunodeficiency virus (SIV) was predicated on its potential to pre-position high-frequency, effector-differentiated, CD8+ T cells in tissues for immediate immune interception of nascent primary infection. This goal was achieved and also led to the unexpected discoveries that non-human primate (NHP) CMVs can be programmed to differentially elicit CD8+ T cell responses that recognize viral peptides via classical MHC-Ia, and/or MHC-II, and/or MHC-E, and that MHC-E-restricted CD8+ T cell responses can uniquely mediate stringent arrest and subsequent clearance of highly pathogenic SIV, an unprecedented type of vaccine-mediated protection. These discoveries delineate CMV vector-elicited MHC-E-restricted CD8+ T cells as a functionally distinct T cell response with the potential for superior efficacy against HIV-1, and possibly other infectious agents or cancers.


Asunto(s)
Vacunas contra el SIDA , Infecciones por Citomegalovirus , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD8-positivos , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Citomegalovirus
6.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36749635

RESUMEN

Rhesus cytomegalovirus-based (RhCMV-based) vaccine vectors induce immune responses that protect ~60% of rhesus macaques (RMs) from SIVmac239 challenge. This efficacy depends on induction of effector memory-based (EM-biased) CD8+ T cells recognizing SIV peptides presented by major histocompatibility complex-E (MHC-E) instead of MHC-Ia. The phenotype, durability, and efficacy of RhCMV/SIV-elicited cellular immune responses were maintained when vector spread was severely reduced by deleting the antihost intrinsic immunity factor phosphoprotein 71 (pp71). Here, we examined the impact of an even more stringent attenuation strategy on vector-induced immune protection against SIV. Fusion of the FK506-binding protein (FKBP) degradation domain to Rh108, the orthologue of the essential human CMV (HCMV) late gene transcription factor UL79, generated RhCMV/SIV vectors that conditionally replicate only when the FK506 analog Shield-1 is present. Despite lacking in vivo dissemination and reduced innate and B cell responses to vaccination, Rh108-deficient 68-1 RhCMV/SIV vectors elicited high-frequency, durable, EM-biased, SIV-specific T cell responses in RhCMV-seropositive RMs at doses of ≥ 1 × 106 PFU. Strikingly, elicited CD8+ T cells exclusively targeted MHC-Ia-restricted epitopes and failed to protect against SIVmac239 challenge. Thus, Rh108-dependent late gene expression is required for both induction of MHC-E-restricted T cells and protection against SIV.


Asunto(s)
Citomegalovirus , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Citomegalovirus/genética , Macaca mulatta , Expresión Génica
7.
Cell Host Microbe ; 30(9): 1207-1218.e7, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35981532

RESUMEN

Strain 68-1 rhesus cytomegalovirus expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) primes MHC-E-restricted CD8+ T cells that control SIV replication in 50%-60% of the vaccinated rhesus macaques. Whether this unconventional SIV-specific immunity and protection is unique to rhesus macaques or RhCMV or is intrinsic to CMV remains unknown. Here, using cynomolgus CMV vectors expressing SIV antigens (CyCMV/SIV) and Mauritian cynomolgus macaques, we demonstrate that the induction of MHC-E-restricted CD8+ T cells requires matching CMV to its host species. RhCMV does not elicit MHC-E-restricted CD8+ T cells in cynomolgus macaques. However, cynomolgus macaques vaccinated with species-matched 68-1-like CyCMV/SIV mounted MHC-E-restricted CD8+ T cells, and half of the vaccinees stringently controlled SIV post-challenge. Protected animals manifested a vaccine-induced IL-15 transcriptomic signature that is associated with efficacy in rhesus macaques. These findings demonstrate that the ability of species-matched CMV vectors to elicit MHC-E-restricted CD8+ T cells that are required for anti-SIV efficacy is conserved in nonhuman primates, and these data support the development of HCMV/HIV for a prophylactic HIV vaccine.


Asunto(s)
Vacunas contra el SIDA , Infecciones por Citomegalovirus , Vacunas contra Citomegalovirus , Vacunas contra el SIDAS , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD8-positivos , Citomegalovirus/genética , Interleucina-15 , Macaca fascicularis , Macaca mulatta
8.
Clin Infect Dis ; 75(8): 1486-1487, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-35819204
9.
Sci Immunol ; 7(72): eabn9301, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35714200

RESUMEN

The strain 68-1 rhesus cytomegalovirus (RhCMV)-based vaccine for simian immunodeficiency virus (SIV) can stringently protect rhesus macaques (RMs) from SIV challenge by arresting viral replication early in primary infection. This vaccine elicits unconventional SIV-specific CD8+ T cells that recognize epitopes presented by major histocompatibility complex (MHC)-II and MHC-E instead of MHC-Ia. Although RhCMV/SIV vaccines based on strains that only elicit MHC-II- and/or MHC-Ia-restricted CD8+ T cells do not protect against SIV, it remains unclear whether MHC-E-restricted T cells are directly responsible for protection and whether these responses can be separated from the MHC-II-restricted component. Using host microRNA (miR)-mediated vector tropism restriction, we show that the priming of MHC-II and MHC-E epitope-targeted responses depended on vector infection of different nonoverlapping cell types in RMs. Selective inhibition of RhCMV infection in myeloid cells with miR-142-mediated tropism restriction eliminated MHC-E epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-II epitope-targeted response. Inhibition with the endothelial cell-selective miR-126 eliminated MHC-II epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-E epitope-targeted response. Dual miR-142 + miR-126-mediated tropism restriction reverted CD8+ T cell responses back to conventional MHC-Ia epitope targeting. Although the magnitude and differentiation state of these CD8+ T cell responses were generally similar, only the vectors programmed to elicit MHC-E-restricted CD8+ T cell responses provided protection against SIV challenge, directly demonstrating the essential role of these responses in RhCMV/SIV vaccine efficacy.


Asunto(s)
Vacunas contra Citomegalovirus , MicroARNs , Vacunas contra el SIDAS , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Linfocitos T CD8-positivos , Citomegalovirus/genética , Epítopos , Macaca mulatta , Complejo Mayor de Histocompatibilidad , Células Mieloides , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Virus de la Inmunodeficiencia de los Simios/genética , Tropismo , Eficacia de las Vacunas
10.
Bioinformatics ; 38(10): 2791-2801, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561167

RESUMEN

MOTIVATION: Single-cell sequencing methods provide previously impossible resolution into the transcriptome of individual cells. Cell hashing reduces single-cell sequencing costs by increasing capacity on droplet-based platforms. Cell hashing methods rely on demultiplexing algorithms to accurately classify droplets; however, assumptions underlying these algorithms limit accuracy of demultiplexing, ultimately impacting the quality of single-cell sequencing analyses. RESULTS: We present Bimodal Flexible Fitting (BFF) demultiplexing algorithms BFFcluster and BFFraw, a novel class of algorithms that rely on the single inviolable assumption that barcode count distributions are bimodal. We integrated these and other algorithms into cellhashR, a new R package that provides integrated QC and a single command to execute and compare multiple demultiplexing algorithms. We demonstrate that BFFcluster demultiplexing is both tunable and insensitive to issues with poorly behaved data that can confound other algorithms. Using two well-characterized reference datasets, we demonstrate that demultiplexing with BFF algorithms is accurate and consistent for both well-behaved and poorly behaved input data. AVAILABILITY AND IMPLEMENTATION: cellhashR is available as an R package at https://github.com/BimberLab/cellhashR. cellhashR version 1.0.3 was used for the analyses in this manuscript and is archived on Zenodo at https://www.doi.org/10.5281/zenodo.6402477. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos , Procesamiento Automatizado de Datos , Análisis de Secuencia , Análisis de la Célula Individual
11.
Clin Infect Dis ; 75(7): 1232-1234, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35452519

RESUMEN

In an exploratory trial treating "long COVID" with the CCR5-binding antibody leronlimab, we observed significantly increased blood cell surface CCR5 in treated symptomatic responders but not in nonresponders or placebo-treated participants. These findings suggest an unexpected mechanism of abnormal immune downmodulation in some persons that is normalized by leronlimab. Clinical Trials Registration. NCT04678830.


Asunto(s)
COVID-19 , Quimiocinas CC , Humanos , Terapia de Inmunosupresión , Receptores CCR5
12.
PLoS Pathog ; 18(3): e1010396, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35358290

RESUMEN

The CCR5-specific antibody Leronlimab is being investigated as a novel immunotherapy that can suppress HIV replication with minimal side effects. Here we studied the virological and immunological consequences of Leronlimab in chronically CCR5-tropic HIV-1 infected humans (n = 5) on suppressive antiretroviral therapy (ART) and in ART-naïve acutely CCR5-tropic SHIV infected rhesus macaques (n = 4). All five human participants transitioned from daily combination ART to self-administered weekly subcutaneous (SC) injections of 350 mg or 700 mg Leronlimab and to date all participants have sustained virologic suppression for over seven years. In all participants, Leronlimab fully occupied CCR5 receptors on peripheral blood CD4+ T cells and monocytes. In ART-naïve rhesus macaques acutely infected with CCR5-tropic SHIV, weekly SC injections of 50 mg/kg Leronlimab fully suppressed plasma viremia in half of the macaques. CCR5 receptor occupancy by Leronlimab occurred concomitant with rebound of CD4+ CCR5+ T-cells in peripheral blood, and full CCR5 receptor occupancy was found in multiple anatomical compartments. Our results demonstrate that weekly, self-administered Leronlimab was safe, well-tolerated, and efficacious for long-term virologic suppression and should be included in the arsenal of safe, easily administered, longer-acting antiretroviral treatments for people living with HIV-1. Trial Registration: ClinicalTrials.gov Identifiers: NCT02175680 and NCT02355184.


Asunto(s)
Virus de la Inmunodeficiencia de los Simios , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Anti-VIH , Humanos , Macaca mulatta , Receptores CCR5
13.
Front Immunol ; 12: 794638, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868084

RESUMEN

CCR5 plays a central role in infectious disease, host defense, and cancer progression, thereby making it an ideal target for therapeutic development. Notably, CCR5 is the major HIV entry co-receptor, where its surface density correlates with HIV plasma viremia. The level of CCR5 receptor occupancy (RO) achieved by a CCR5-targeting therapeutic is therefore a critical predictor of its efficacy. However, current methods to measure CCR5 RO lack sensitivity, resulting in high background and overcalculation. Here, we report on two independent, flow cytometric methods of calculating CCR5 RO using the anti-CCR5 antibody, Leronlimab. We show that both methods led to comparable CCR5 RO values, with low background on untreated CCR5+CD4+ T cells and sensitive measurements of occupancy on both blood and tissue-resident CD4+ T cells that correlated longitudinally with plasma concentrations in Leronlimab-treated macaques. Using these assays, we found that Leronlimab stabilized cell surface CCR5, leading to an increase in the levels of circulating and tissue-resident CCR5+CD4+ T cells in vivo in Leronlimab-treated macaques. Weekly Leronlimab treatment in a chronically SIV-infected macaque led to increased CCR5+CD4+ T cells levels and fully suppressed plasma viremia, both concomitant with full CCR5 RO on peripheral blood CD4+ T cells, demonstrating that CCR5+CD4+ T cells were protected from viral replication by Leronlimab binding. Finally, we extended these results to Leronlimab-treated humans and found that weekly 700 mg Leronlimab led to complete CCR5 RO on peripheral blood CD4+ T cells and a statistically significant increase in CCR5+CD4+ T cells in peripheral blood. Collectively, these results establish two RO calculation methods for longitudinal monitoring of anti-CCR5 therapeutic antibody blockade efficacy in both macaques and humans, demonstrate that CCR5+CD4+ T cell levels temporarily increase with Leronlimab treatment, and facilitate future detailed investigations into the immunological impacts of CCR5 inhibition in multiple pathophysiological processes.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Linfocitos T CD4-Positivos , Anticuerpos Anti-VIH , Receptores CCR5 , Síndrome de Inmunodeficiencia Adquirida del Simio , Animales , Femenino , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Tratamiento Farmacológico de COVID-19 , Citometría de Flujo , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Primates , Unión Proteica , Receptores CCR5/inmunología , Receptores CCR5/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Resultado del Tratamiento
14.
J Immunol ; 207(12): 2913-2921, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34810222

RESUMEN

CD8+ T cells are key mediators of antiviral and antitumor immunity. The isolation and study of Ag-specific CD8+ T cells, as well as mapping of their MHC restriction, has practical importance to the study of disease and the development of therapeutics. Unfortunately, most experimental approaches are cumbersome, owing to the highly variable and donor-specific nature of MHC-bound peptide/TCR interactions. Here we present a novel system for rapid identification and characterization of Ag-specific CD8+ T cells, particularly well suited for samples with limited primary cells. Cells are stimulated ex vivo with Ag of interest, followed by live cell sorting based on surface-trapped TNF-α. We take advantage of major advances in single-cell sequencing to generate full-length sequence data from the paired TCR α- and ß-chains from these Ag-specific cells. The paired TCR chains are cloned into retroviral vectors and used to transduce donor CD8+ T cells. These TCR transductants provide a virtually unlimited experimental reagent, which can be used for further characterization, such as minimal epitope mapping or identification of MHC restriction, without depleting primary cells. We validated this system using CMV-specific CD8+ T cells from rhesus macaques, characterizing an immunodominant Mamu-A1*002:01-restricted epitope. We further demonstrated the utility of this system by mapping a novel HLA-A*68:02-restricted HIV Gag epitope from an HIV-infected donor. Collectively, these data validate a new strategy to rapidly identify novel Ags and characterize Ag-specific CD8+ T cells, with applications ranging from the study of infectious disease to immunotherapeutics and precision medicine.


Asunto(s)
Linfocitos T CD8-positivos , Infecciones por VIH , Animales , Epítopos , Epítopos de Linfocito T , Macaca mulatta , Receptores de Antígenos de Linfocitos T , Factor de Necrosis Tumoral alfa
15.
PLoS Pathog ; 17(7): e1009278, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34228762

RESUMEN

Simian immunodeficiency virus (SIV) challenge of rhesus macaques (RMs) vaccinated with strain 68-1 Rhesus Cytomegalovirus (RhCMV) vectors expressing SIV proteins (RhCMV/SIV) results in a binary outcome: stringent control and subsequent clearance of highly pathogenic SIV in ~55% of vaccinated RMs with no protection in the remaining 45%. Although previous work indicates that unconventionally restricted, SIV-specific, effector-memory (EM)-biased CD8+ T cell responses are necessary for efficacy, the magnitude of these responses does not predict efficacy, and the basis of protection vs. non-protection in 68-1 RhCMV/SIV vector-vaccinated RMs has not been elucidated. Here, we report that 68-1 RhCMV/SIV vector administration strikingly alters the whole blood transcriptome of vaccinated RMs, with the sustained induction of specific immune-related pathways, including immune cell, toll-like receptor (TLR), inflammasome/cell death, and interleukin-15 (IL-15) signaling, significantly correlating with subsequent vaccine efficacy. Treatment of a separate RM cohort with IL-15 confirmed the central involvement of this cytokine in the protection signature, linking the major innate and adaptive immune gene expression networks that correlate with RhCMV/SIV vaccine efficacy. This change-from-baseline IL-15 response signature was also demonstrated to significantly correlate with vaccine efficacy in an independent validation cohort of vaccinated and challenged RMs. The differential IL-15 gene set response to vaccination strongly correlated with the pre-vaccination activity of this pathway, with reduced baseline expression of IL-15 response genes significantly correlating with higher vaccine-induced induction of IL-15 signaling and subsequent vaccine protection, suggesting that a robust de novo vaccine-induced IL-15 signaling response is needed to program vaccine efficacy. Thus, the RhCMV/SIV vaccine imparts a coordinated and persistent induction of innate and adaptive immune pathways featuring IL-15, a known regulator of CD8+ T cell function, that support the ability of vaccine-elicited unconventionally restricted CD8+ T cells to mediate protection against SIV challenge.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Interleucina-15/inmunología , Vacunas contra el SIDAS/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Citomegalovirus , Femenino , Vectores Genéticos , Macaca mulatta , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control
16.
Nat Commun ; 12(1): 3343, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099693

RESUMEN

In the absence of a prophylactic vaccine, the use of antiretroviral therapy (ART) as pre-exposure prophylaxis (PrEP) to prevent HIV acquisition by uninfected individuals is a promising approach to slowing the epidemic, but its efficacy is hampered by incomplete patient adherence and ART-resistant variants. Here, we report that competitive inhibition of HIV Env-CCR5 binding via the CCR5-specific antibody Leronlimab protects rhesus macaques against infection following repeated intrarectal challenges of CCR5-tropic SHIVSF162P3. Injection of Leronlimab weekly at 10 mg/kg provides significant but partial protection, while biweekly 50 mg/kg provides complete protection from SHIV acquisition. Tissue biopsies from protected macaques post challenge show complete CCR5 receptor occupancy and an absence of viral nucleic acids. After Leronlimab washout, protected macaques remain aviremic, and adoptive transfer of hematologic cells into naïve macaques does not transmit viral infection. These data identify CCR5 blockade with Leronlimab as a promising approach to HIV prophylaxis and support initiation of clinical trials.


Asunto(s)
Receptores CCR5/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Femenino , Anticuerpos Anti-VIH/farmacología , Infecciones por VIH , Humanos , Macaca mulatta , Masculino , Membrana Mucosa , Profilaxis Pre-Exposición , Carga Viral
17.
PLoS Pathog ; 17(5): e1009565, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33970966

RESUMEN

Here, we assessed the efficacy of a short-course multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common macaque endemic pathogens (EPs) and evaluated its impact on gastrointestinal (GI) microbiota, mucosal integrity, and local and systemic inflammation in sixteen clinically healthy macaques. Treatment combined with expanded practices resulted in successful maintenance of rhesus macaques (RM) free of common EPs, with no evidence of overt microbiota diversity loss or dysbiosis and instead resulted in a more defined luminal microbiota across study subjects. Creation of a GI pathogen free (GPF) status resulted in improved colonic mucosal barrier function (histologically, reduced colonic MPO+, and reduced pan-bacterial 16s rRNA in the MLN), reduced local and systemic innate and adaptive inflammation with reduction of colonic Mx1 and pSTAT1, decreased intermediate (CD14+CD16+) and non-classical monocytes (CD14-CD16+), reduced populations of peripheral dendritic cells, Ki-67+ and CD38+ CD4+ T cells, Ki-67+IgG+, and Ki-67+IgD+ B cells indicating lower levels of background inflammation in the distal descending colon, draining mesenteric lymph nodes, and systemically in peripheral blood, spleen, and axillary lymph nodes. A more controlled rate of viral acquisition resulted when untreated and treated macaques were challenged by low dose intrarectal SIVmac239x, with an ~100 fold increase in dose required to infect 50% (AID50) of the animals receiving treatment compared to untreated controls. Reduction in and increased consistency of number of transmitted founder variants resulting from challenge seen in the proof of concept study directly correlated with post-treatment GPF animal's improved barrier function and reduction of key target cell populations (Ki-67+ CD4+T cells) at the site of viral acquisition in the follow up study. These data demonstrate that a therapeutic and operational strategy can successfully eliminate varying background levels of EPs and their associated aberrant immunomodulatory effects within a captive macaque cohort, leading to a more consistent, better defined and reproducible research model.


Asunto(s)
Inflamación/terapia , Microbiota/efectos de los fármacos , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia , Virus de la Inmunodeficiencia de los Simios/inmunología , Inmunidad Adaptativa , Animales , Linfocitos B , Linfocitos T CD4-Positivos , Proliferación Celular , Terapia Combinada , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Humanos , Inmunidad Innata , Mucosa Intestinal , Ganglios Linfáticos , Macaca mulatta , Masculino , Monocitos , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología
18.
Sci Immunol ; 6(57)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766849

RESUMEN

Simian immunodeficiency virus (SIV) insert-expressing, 68-1 rhesus cytomegalovirus (RhCMV/SIV) vectors elicit major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+ T cell responses, but the basis of these unconventional responses and their contribution to demonstrated vaccine efficacy against SIV challenge in the rhesus monkeys (RMs) have not been characterized. We show that these unconventional responses resulted from a chance genetic rearrangement in 68-1 RhCMV that abrogated the function of eight distinct immunomodulatory gene products encoded in two RhCMV genomic regions (Rh157.5/Rh157.4 and Rh158-161), revealing three patterns of unconventional response inhibition. Differential repair of these genes with either RhCMV-derived or orthologous human CMV (HCMV)-derived sequences (UL128/UL130; UL146/UL147) leads to either of two distinct CD8+ T cell response types-MHC-Ia-restricted only or a mix of MHC-II- and MHC-Ia-restricted CD8+ T cells. Response magnitude and functional differentiation are similar to RhCMV 68-1, but neither alternative response type mediated protection against SIV challenge. These findings implicate MHC-E-restricted CD8+ T cell responses as mediators of anti-SIV efficacy and indicate that translation of RhCMV/SIV vector efficacy to humans will likely require deletion of all genes that inhibit these responses from the HCMV/HIV vector.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reprogramación Celular/inmunología , Infecciones por Citomegalovirus/veterinaria , Citomegalovirus/inmunología , Enfermedades de los Monos/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Vacunas Virales/inmunología , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/metabolismo , Reprogramación Celular/genética , Ingeniería Genética/métodos , Vectores Genéticos/genética , Inmunogenicidad Vacunal , Memoria Inmunológica , Macaca mulatta , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/virología , Sistemas de Lectura Abierta/genética , Sistemas de Lectura Abierta/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Eficacia de las Vacunas
19.
Science ; 372(6541)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33766941

RESUMEN

Strain 68-1 rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens elicit CD8+ T cells recognizing epitopes presented by major histocompatibility complex II (MHC-II) and MHC-E but not MHC-Ia. These immune responses mediate replication arrest of SIV in 50 to 60% of monkeys. We show that the peptide VMAPRTLLL (VL9) embedded within the RhCMV protein Rh67 promotes intracellular MHC-E transport and recognition of RhCMV-infected fibroblasts by MHC-E-restricted CD8+ T cells. Deletion or mutation of viral VL9 abrogated MHC-E-restricted CD8+ T cell priming, resulting in CD8+ T cell responses exclusively targeting MHC-II-restricted epitopes. These responses were comparable in magnitude and differentiation to responses elicited by 68-1 vectors but did not protect against SIV. Thus, Rh67-enabled direct priming of MHC-E-restricted T cells is crucial for RhCMV/SIV vaccine efficacy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citomegalovirus/metabolismo , Vectores Genéticos/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Fragmentos de Péptidos/metabolismo , Vacunas contra el SIDAS/inmunología , Animales , Línea Celular , Citomegalovirus/genética , Epítopos de Linfocito T/inmunología , Fibroblastos/metabolismo , Vectores Genéticos/genética , Antígenos de Histocompatibilidad Clase I/genética , Ligandos , Macaca mulatta , Fragmentos de Péptidos/genética , Transporte de Proteínas , Virus de la Inmunodeficiencia de los Simios , Antígenos HLA-E
20.
Cell Host Microbe ; 29(4): 594-606.e6, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33711270

RESUMEN

CD4 T cell effector function is required for optimal containment of Mycobacterium tuberculosis (Mtb) infection. IFNÉ£ produced by CD4 T cells is a key cytokine that contributes to protection. However, lung-infiltrating CD4 T cells have a limited ability to produce IFNÉ£, and IFNÉ£ plays a lesser protective role within the lung than at sites of Mtb dissemination. In a murine infection model, we observed that IFNÉ£ production by Mtb-specific CD4 T cells is rapidly extinguished within the granuloma but not within unaffected lung regions, suggesting localized immunosuppression. We identified a signature of TGFß signaling within granuloma-infiltrating T cells in both mice and rhesus macaques. Selective blockade of TGFß signaling in T cells resulted in an accumulation of terminally differentiated effector CD4 T cells, improved IFNÉ£ production within granulomas, and reduced bacterial burdens. These findings uncover a spatially localized immunosuppressive mechanism associated with Mtb infection and provide potential targets for host-directed therapy.


Asunto(s)
Granuloma/inmunología , Linfocitos T/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Tuberculosis/inmunología , Inmunidad Adaptativa , Animales , Linfocitos T CD4-Positivos , Muerte Celular , Citocinas , Modelos Animales de Enfermedad , Femenino , Granuloma/microbiología , Inflamación , Interferón gamma , Pulmón/microbiología , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis , Células TH1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA