Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 43(8): 1510-1523, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37259863

RESUMEN

BACKGROUND: Inflammation triggered by the deposition of LDL (low-density lipoprotein) in the arterial wall leads to the development of atherosclerosis. Regulatory T (Treg) cells inhibit vascular inflammation through the induction of immune tolerance toward LDL-related antigens. However, tolerogenic mechanisms that promote the generation of LDL-specific Treg cells in vivo remain unclear. METHODS: We identified LDL-specific T cells by activation-induced marker expression and analyzed expression profiles and suppressive functions of TCR (T-cell antigen receptor)-transgenic T cells upon repetitive transfer into antigen-transgenic mice via flow cytometry. RESULTS: We investigated the naturally occurring Treg-cell response against human LDL in standard chow diet-fed mice that are transgenic for human ApoB100 (apolipoprotein B100). We found that IL (interleukin)-10 expression in LDL-specific T cells from spleen increases with age, albeit LDL-specific populations do not enlarge in older mice. To investigate the generation of IL-10-producing LDL-specific T cells, we transferred naive CD4+ T cells recognizing human ApoB100 from TCR-transgenic mice into human ApoB100-transgenic mice. Adoptive transfer of human ApoB100-specific T cells induced immune tolerance in recipient mice and effectively inhibited activation of subsequently transferred naive T cells of the same specificity in vivo. Moreover, repetitive transfers increased the population of Treg type 1 cells that suppress ApoB100-specific responses via IL-10. In a translational approach, LDL-specific Treg type 1 cells from blood of healthy donors suppressed the activation of monocytic THP-1 cells in an IL-10-dependent manner. CONCLUSIONS: We show that repetitive transfer of naive ApoB100-specific T cells and recurrent LDL-specific T-cell stimulation induces Treg type 1 cell-mediated immune tolerance against LDL in vivo. Our results provide insight into the generation of autoantigen-specific anti-inflammatory T cells under tolerogenic conditions.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T Reguladores , Ratones , Humanos , Animales , Interleucina-10/genética , Ratones Transgénicos , Tolerancia Inmunológica , Receptores de Antígenos de Linfocitos T/metabolismo , Inflamación/metabolismo
2.
Circ Res ; 130(12): 1869-1887, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679358

RESUMEN

Atherosclerotic cardiovascular disease is a major cause of death among humans. Animal models have shown that cholesterol and inflammation are causatively involved in the disease process. Apolipoprotein B-containing lipoproteins elicit immune reactions and instigate inflammation in the vessel wall. Still, a treatment that is specific to vascular inflammation is lacking, which motivates continued in vivo investigations of the immune-vascular interactions that drive the disease. In this review, we distill old notions with emerging concepts into a contemporary understanding of vascular disease models. Pros and cons of different models are listed and the complex integrative interplay between cholesterol homeostasis, immune activation, and adaptations of the vascular system is discussed. Key limitations with atherosclerosis models are highlighted, and we suggest improvements that could accelerate progress in the field. However, excessively rigid experimental guidelines or limiting usage to certain animal models can be counterproductive. Continued work in improved models, as well as the development of new models, should be of great value in research and could aid the development of cardiovascular disease diagnostics and therapeutics of the future.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Animales , Colesterol , Inflamación , Modelos Animales
3.
iScience ; 25(5): 104219, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494231

RESUMEN

Unstable carotid stenosis is an important cause of ischemic stroke, yet the basis of disease pathophysiology remains largely unknown. We hypothesized that integrated analyses of symptomatic carotid stenosis patients at increased stroke risk stratified by clinical scores, CAR and ABCD2, with transcriptomic and clinical data could improve identification of molecular pathways and targets for instability. We show that high CAR score reflects plaque instability processes related to intra-plaque hemorrhage, angiogenesis, inflammation, and foam cell differentiation, whereas ABCD2 associates with neutrophil-mediated immunity, foam cell differentiation, cholesterol transport, and coagulation. Repressed processes in plaques from high-risk patients were ossification, chondrocyte differentiation, SMC migration, and ECM organization. ABCB5 gene was found as the top upregulated in high-risk patient's plaques, localized to macrophages in areas with neovascularization and intra-plaque hemorrhage. The link between ABCB5 and intra-plaque hemorrhage suggests its key role for plaque instability that warrants further exploration.

4.
Arterioscler Thromb Vasc Biol ; 42(5): 659-676, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35321563

RESUMEN

BACKGROUND: Understanding the processes behind carotid plaque instability is necessary to develop methods for identification of patients and lesions with stroke risk. Here, we investigated molecular signatures in human plaques stratified by echogenicity as assessed by duplex ultrasound. METHODS: Lesion echogenicity was correlated to microarray gene expression profiles from carotid endarterectomies (n=96). The findings were extended into studies of human and mouse atherosclerotic lesions in situ, followed by functional investigations in vitro in human carotid smooth muscle cells (SMCs). RESULTS: Pathway analyses highlighted muscle differentiation, iron homeostasis, calcification, matrix organization, cell survival balance, and BCLAF1 (BCL2 [B-cell lymphoma 2]-associated transcription factor 1) as the most significant signatures. BCLAF1 was downregulated in echolucent plaques, positively correlated to proliferation and negatively to apoptosis. By immunohistochemistry, BCLAF1 was found in normal medial SMCs. It was repressed early during atherogenesis but reappeared in CD68+ cells in advanced plaques and interacted with BCL2 by proximity ligation assay. In cultured SMCs, BCLAF1 was induced by differentiation factors and mitogens and suppressed by macrophage-conditioned medium. BCLAF1 silencing led to downregulation of BCL2 and SMC markers, reduced proliferation, and increased apoptosis. Transdifferentiation of SMCs by oxLDL (oxidized low-denisty lipoprotein) was accompanied by upregulation of BCLAF1, CD36, and CD68, while oxLDL exposure with BCLAF1 silencing preserved MYH (myosin heavy chain) 11 expression and prevented transdifferentiation. BCLAF1 was associated with expression of cell differentiation, contractility, viability, and inflammatory genes, as well as the scavenger receptors CD36 and CD68. BCLAF1 expression in CD68+/BCL2+ cells of SMC origin was verified in plaques from MYH11 lineage-tracing atherosclerotic mice. Moreover, BCLAF1 downregulation associated with vulnerability parameters and cardiovascular risk in patients with carotid atherosclerosis. CONCLUSIONS: Plaque echogenicity correlated with enrichment of distinct molecular pathways and identified BCLAF1, previously not described in atherosclerosis, as the most significant gene. Functionally, BCLAF1 seems necessary for survival and transdifferentiation of SMCs into a macrophage-like phenotype. The role of BCLAF1 in plaque vulnerability should be further evaluated.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Proteínas Represoras/metabolismo , Animales , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/genética , Aterosclerosis/metabolismo , Transdiferenciación Celular , Humanos , Lípidos , Ratones , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/patología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Represoras/genética , Transcriptoma , Proteínas Supresoras de Tumor/genética , Ultrasonografía
6.
J Clin Invest ; 131(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34699386

RESUMEN

Chronic inflammation is a hallmark of atherosclerosis and results from an imbalance between proinflammatory and proresolving signaling. The human GPR32 receptor, together with the ALX/FPR2 receptor, transduces biological actions of several proresolving mediators that stimulate resolution of inflammation. However, since no murine homologs of the human GPR32 receptor exist, comprehensive in vivo studies are lacking. Using human atherosclerotic lesions from carotid endarterectomies and creating a transgenic mouse model expressing human GPR32 on a Fpr2×ApoE double-KO background (hGPR32myc×Fpr2-/-×Apoe-/-), we investigated the role of GPR32 in atherosclerosis and self-limiting acute inflammation. GPR32 mRNA was reduced in human atherosclerotic lesions and correlated with the immune cell markers ARG1, NOS2, and FOXP3. Atherosclerotic lesions, necrotic core, and aortic inflammation were reduced in hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice as compared with Fpr2-/-×Apoe-/- nontransgenic littermates. In a zymosan-induced peritonitis model, the hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice had reduced inflammation at 4 hours and enhanced proresolving macrophage responses at 24 hours compared with nontransgenic littermates. The GPR32 agonist aspirin-triggered resolvin D1 (AT-RvD1) regulated leukocyte responses, including enhancing macrophage phagocytosis and intracellular signaling in hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice, but not in Fpr2-/-×Apoe-/- nontransgenic littermates. Together, these results provide evidence that GPR32 regulates resolution of inflammation and is atheroprotective in vivo.


Asunto(s)
Aterosclerosis , Macrófagos/metabolismo , Transducción de Señal/genética , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/genética , Ácidos Docosahexaenoicos/metabolismo , Femenino , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/prevención & control , Masculino , Ratones , Ratones Noqueados para ApoE , Peritonitis/inducido químicamente , Peritonitis/genética , Peritonitis/metabolismo , Fagocitosis/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
8.
Circ Res ; 126(9): 1281-1296, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32324498

RESUMEN

Adaptive as well as innate immune responses contribute to the development of atherosclerosis. Studies performed in experimental animals have revealed that some of these immune responses are protective while others contribute to the progression of disease. These observations suggest that it may be possible to develop novel therapies for cardiovascular disease by selectively modulating such atheroprotective and proatherogenic immunity. Recent advances in cancer treatment using immune check inhibitors and CAR (chimeric antigen receptor) T-cell therapy serve as excellent examples of the possibilities of targeting the immune system to combat disease. LDL (low-density lipoprotein) that has accumulated in the artery wall is a key autoantigen in atherosclerosis, and activation of antigen-specific T helper 1-type T cells is thought to fuel plaque inflammation. Studies aiming to prove this concept by immunizing experimental animals with oxidized LDL particles unexpectedly resulted in activation of atheroprotective immunity involving regulatory T cells. This prompted several research groups to try to develop vaccines against atherosclerosis. In this review, we will discuss the experimental and clinical data supporting the possibility of developing immune-based therapies for lowering cardiovascular risk. We will also summarize ongoing clinical studies and discuss the challenges associated with developing an effective and safe atherosclerosis vaccine.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Anticuerpos/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Linfocitos B/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Inflamación/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Vacunas/uso terapéutico , Animales , Anticuerpos/efectos adversos , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Transducción de Señal , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunas/efectos adversos
9.
Circ Res ; 126(5): 571-585, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31893970

RESUMEN

RATIONALE: PCSKs (Proprotein convertase subtilisins/kexins) are a protease family with unknown functions in vasculature. Previously, we demonstrated PCSK6 upregulation in human atherosclerotic plaques associated with smooth muscle cells (SMCs), inflammation, extracellular matrix remodeling, and mitogens. OBJECTIVE: Here, we applied a systems biology approach to gain deeper insights into the PCSK6 role in normal and diseased vessel wall. METHODS AND RESULTS: Genetic analyses revealed association of intronic PCSK6 variant rs1531817 with maximum internal carotid intima-media thickness progression in high-cardiovascular risk subjects. This variant was linked with PCSK6 mRNA expression in healthy aortas and plaques but also with overall plaque SMA+ cell content and pericyte fraction. Increased PCSK6 expression was found in several independent human cohorts comparing atherosclerotic lesions versus healthy arteries, using transcriptomic and proteomic datasets. By immunohistochemistry, PCSK6 was localized to fibrous cap SMA+ cells and neovessels in plaques. In human, rat, and mouse intimal hyperplasia, PCSK6 was expressed by proliferating SMA+ cells and upregulated after 5 days in rat carotid balloon injury model, with positive correlation to PDGFB (platelet-derived growth factor subunit B) and MMP (matrix metalloprotease) 2/MMP14. Here, PCSK6 was shown to colocalize and cointeract with MMP2/MMP14 by in situ proximity ligation assay. Microarrays of carotid arteries from Pcsk6-/- versus control mice revealed suppression of contractile SMC markers, extracellular matrix remodeling enzymes, and cytokines/receptors. Pcsk6-/- mice showed reduced intimal hyperplasia response upon carotid ligation in vivo, accompanied by decreased MMP14 activation and impaired SMC outgrowth from aortic rings ex vivo. PCSK6 silencing in human SMCs in vitro leads to downregulation of contractile markers and increase in MMP2 expression. Conversely, PCSK6 overexpression increased PDGFBB (platelet-derived growth factor BB)-induced cell proliferation and particularly migration. CONCLUSIONS: PCSK6 is a novel protease that induces SMC migration in response to PDGFB, mechanistically via modulation of contractile markers and MMP14 activation. This study establishes PCSK6 as a key regulator of SMC function in vascular remodeling. Visual Overview: An online visual overview is available for this article.


Asunto(s)
Miocitos del Músculo Liso/metabolismo , Proproteína Convertasas/genética , Serina Endopeptidasas/genética , Remodelación Vascular , Animales , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Masculino , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/fisiología , Polimorfismo de Nucleótido Simple , Proproteína Convertasas/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Ratas , Ratas Sprague-Dawley , Serina Endopeptidasas/metabolismo , Transcriptoma
10.
Cardiovasc Res ; 116(12): 1948-1957, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589306

RESUMEN

AIMS: Atherosclerosis is a chronic inflammatory disease involving immunological and metabolic processes. Metabolism of tryptophan (Trp) via the kynurenine pathway has shown immunomodulatory properties and the ability to modulate atherosclerosis. We identified 3-hydroxyanthranilic acid (3-HAA) as a key metabolite of Trp modulating vascular inflammation and lipid metabolism. The molecular mechanisms driven by 3-HAA in atherosclerosis have not been completely elucidated. In this study, we investigated whether two major signalling pathways, activation of SREBPs and inflammasome, are associated with the 3-HAA-dependent regulation of lipoprotein synthesis and inflammation in the atherogenesis process. Moreover, we examined whether inhibition of endogenous 3-HAA degradation affects hyperlipidaemia and plaque formation. METHODS AND RESULTS: In vitro, we showed that 3-HAA reduces SREBP-2 expression and nuclear translocation and apolipoprotein B secretion in HepG2 cell cultures, and inhibits inflammasome activation and IL-1ß production by macrophages. Using Ldlr-/- mice, we showed that inhibition of 3-HAA 3,4-dioxygenase (HAAO), which increases the endogenous levels of 3-HAA, decreases plasma lipids and atherosclerosis. Notably, HAAO inhibition led to decreased hepatic SREBP-2 mRNA levels and lipid accumulation, and improved liver pathology scores. CONCLUSIONS: We show that the activity of SREBP-2 and the inflammasome can be regulated by 3-HAA metabolism. Moreover, our study highlights that targeting HAAO is a promising strategy to prevent and treat hypercholesterolaemia and atherosclerosis.


Asunto(s)
Ácido 3-Hidroxiantranílico/metabolismo , Aterosclerosis/metabolismo , Inflamasomas/metabolismo , Lipoproteínas/sangre , Hígado/metabolismo , Macrófagos/metabolismo , Receptores de LDL/deficiencia , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , 3-Hidroxiantranilato 3,4-Dioxigenasa/antagonistas & inhibidores , 3-Hidroxiantranilato 3,4-Dioxigenasa/metabolismo , Ácido 3-Hidroxiantranílico/análogos & derivados , Ácido 3-Hidroxiantranílico/farmacología , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Humanos , Interleucina-1beta/metabolismo , Hígado/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica , Receptores de LDL/genética , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
11.
Atherosclerosis ; 292: 215-223, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31606133

RESUMEN

BACKGROUND AND AIMS: Endothelin-1 (ET-1) and arginase are both suggested to be involved in the inflammatory processes and development of endothelial dysfunction in atherosclerosis. However, information regarding the roles of ET-1 and arginase, as well as the interactions between the two in human atherosclerosis, is scarce. We investigated the expression of ET-1 and its receptors, ETA and ETB, as well as arginase in human carotid atherosclerotic plaques and determined the functional interactions between ET-1 and arginase in endothelial cells and THP-1-derived macrophages. METHODS: Carotid plaques and blood samples were retreived from patients undergoing surgery for symptomatic or asymptomatic carotid stenosis. Plaque gene and protein expression was determined and related to clinical characteristics. Functional interactions between ET-1 and arginase were investigated in endothelial cells and THP-1 cells. RESULTS: Expression of ET-1 and ETB receptors was increased in plaques from patients with symptomatic carotid artery disease. ET-1 was co-localized with arginase 1 and arginase 2 in the necrotic core, together with macrophage markers CD163 and CD68. Arginase 2, ET-1 and ETB receptors were expressed in endothelial cells as well as in smooth muscle cells in the fibrous cap. ET-1 increased arginase 2 mRNA expression and arginase activity in endothelial cells and arginase activity in macrophages. Moreover, ET-1 stimulated formation of reactive oxygen species (ROS) in THP-1-derived macrophages via an arginase-dependent mechanism. CONCLUSIONS: This is the first study that demonstrates co-localization of ET-1 and arginase 2 in human atherosclerotic plaques. ET-1 stimulated arginase 2 expression and activity in endothelial cells, as well as arginase activity and ROS formation in macrophages via an arginase-dependent mechanism. These results indicate an important interaction between the ET pathway and arginase in human atherosclerotic plaques.


Asunto(s)
Arginasa/fisiología , Endotelina-1/fisiología , Placa Aterosclerótica/metabolismo , Receptor de Endotelina B/fisiología , Arginasa/biosíntesis , Células Cultivadas , Células Endoteliales , Endotelina-1/biosíntesis , Humanos
12.
Nature ; 574(7780): 634, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31664210
13.
J Am Coll Cardiol ; 74(12): 1594-1607, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31537270

RESUMEN

Concepts of atherogenesis have evolved considerably with time. Early animal experiments showed that a cholesterol-rich diet could induce fatty lesion formation in arteries. The elucidation of lipoprotein metabolism ultimately led to demonstrating the clinical benefits of lipid lowering. The view of atheromata as bland accumulations of smooth muscle cells that elaborated an extracellular matrix that could entrap lipids then expanded to embrace inflammation as providing pathways that could link risk factors to atherogenesis. The characterization of leukocyte adhesion molecules and their control by proinflammatory cytokines, the ability of chemokines to recruit leukocytes, and the identification of inflammatory cell subtypes in lesions spurred the unraveling of innate and adaptive immune pathways that contribute to atherosclerosis and its thrombotic complications. Such pathophysiologic insights have led to the identification of biomarkers that can define categories of risk and direct therapies and to the development of new treatments.


Asunto(s)
Aterosclerosis/etiología , Inflamación/etiología , Metabolismo de los Lípidos , Humanos , Trombosis/complicaciones
14.
Nat Rev Dis Primers ; 5(1): 56, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420554

RESUMEN

Atherosclerosis, the formation of fibrofatty lesions in the artery wall, causes much morbidity and mortality worldwide, including most myocardial infarctions and many strokes, as well as disabling peripheral artery disease. Development of atherosclerotic lesions probably requires low-density lipoprotein, a particle that carries cholesterol through the blood. Other risk factors for atherosclerosis and its thrombotic complications include hypertension, cigarette smoking and diabetes mellitus. Increasing evidence also points to a role of the immune system, as emerging risk factors include inflammation and clonal haematopoiesis. Studies of the cell and molecular biology of atherogenesis have provided considerable insight into the mechanisms that link all these risk factors to atheroma development and the clinical manifestations of this disease. An array of diagnostic techniques, both invasive (such as selective coronary arteriography) and noninvasive (such as blood biomarkers, stress testing, CT and nuclear scanning), permit assessment of cardiovascular disease risk and targeting of therapies. An expanding armamentarium of therapies that can modify risk factors and confer clinical benefit is available; however, we face considerable challenge in providing equitable access to these treatments and in maximizing adherence. Yet, the clinical application of the fruits of research has advanced preventive strategies, enhanced clinical outcomes in affected individuals, and improved their quality of life. Rapidly accelerating knowledge and continued research promise to provide further progress in combating this common chronic disease.


Asunto(s)
Aterosclerosis/complicaciones , Aterosclerosis/fisiopatología , Aterosclerosis/epidemiología , Quimioterapia/métodos , Humanos , Hiperlipidemias/complicaciones , Hiperlipidemias/epidemiología , Tamizaje Masivo/métodos , Factores de Riesgo
15.
JACC Basic Transl Sci ; 4(3): 304-317, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31312755

RESUMEN

CANTOS (Canakinumab Antiinflammatory Thrombosis Outcome Study) confirmed interleukin (IL)-1ß as an appealing therapeutic target for human atherosclerosis and related complications. However, there are serious gaps in our understanding of IL-1 production in atherosclerosis. Herein the authors show that complex plaques, or plaques derived from patients with suboptimally controlled hyperlipidemia, or on no or low-intensity statin therapy, demonstrated higher recruitable IL-1ß production. Generation of mature IL-1ß was matched by IL-1α release, and both were attenuated by inhibition of NLR family pyrin domain containing 3 or caspase. These findings support the inflammasome as the main pathway for IL-1α/ß generation in atherosclerosis and high-intensity lipid-lowering therapies as primary and additional anti-IL-1-directed therapies as secondary interventions in high-risk patients.

16.
Eur Heart J ; 40(30): 2495-2503, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31081038

RESUMEN

AIMS: Radiotherapy-induced cardiovascular disease is an emerging problem in a growing population of cancer survivors where traditional treatments, such as anti-platelet and lipid-lowering drugs, have limited benefits. The aim of the study was to investigate vascular inflammatory patterns in human cancer survivors, replicate the findings in an animal model, and evaluate whether interleukin-1 (IL-1) inhibition could be a potential treatment. METHODS AND RESULTS: Irradiated human arterial biopsies were collected during microvascular autologous free tissue transfer for cancer reconstruction and compared with non-irradiated arteries from the same patient. A mouse model was used to study the effects of the IL-1 receptor antagonist, anakinra, on localized radiation-induced vascular inflammation. We observed significant induction of genes associated with inflammasome biology in whole transcriptome analysis of irradiated arteries, a finding supported by elevated protein levels in irradiated arteries of both, pro-caspase and caspase-1. mRNA levels of inflammasome associated chemokines CCL2, CCL5 together with the adhesion molecule VCAM1, were elevated in human irradiated arteries as was the number of infiltrating macrophages. A similar pattern was reproduced in Apoe-/- mouse 10 weeks after localized chest irradiation with 14 Gy. Treatment with anakinra in irradiated mice significantly reduced Ccl2 and Ccl5 mRNA levels and expression of I-Ab. CONCLUSION: Anakinra, administered directly after radiation exposure for 2 weeks, ameliorated radiation induced sustained expression of inflammatory mediators in mice. Further studies are needed to evaluate IL-1 blockade as a treatment of radiotherapy-induced vascular disease in a clinical setting.


Asunto(s)
Arteritis/prevención & control , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1/antagonistas & inhibidores , Traumatismos Experimentales por Radiación/prevención & control , Radioterapia/efectos adversos , Animales , Arteritis/etiología , Quimiocina CCL2/metabolismo , Femenino , Humanos , Interleucina-1/metabolismo , Ratones , Ratones Endogámicos C57BL , Neoplasias/radioterapia , Traumatismos Experimentales por Radiación/metabolismo
17.
JACC Basic Transl Sci ; 4(1): 72-82, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30847421

RESUMEN

As a consequence of the success of present-day cancer treatment, radiotherapy-induced vascular disease is emerging. This disease is caused by chronic inflammatory activation and is likely orchestrated in part by microRNAs. In irradiated versus nonirradiated conduit arteries from patients receiving microvascular free tissue transfer reconstructions, irradiation resulted in down-regulation of miR-29b and up-regulation of miR-146b. miR-29b affected inflammation and adverse wound healing through its targets pentraxin-3 and dipeptidyl-peptidase 4. In vitro and in vivo, we showed that miR-29b overexpression therapy, through inhibition of pentraxin-3 and dipeptidyl-peptidase 4, could dampen the vascular inflammatory response.

18.
Circulation ; 139(21): 2466-2482, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30894016

RESUMEN

BACKGROUND: Atherosclerosis progression is modulated by interactions with the adaptive immune system. Humoral immunity can help protect against atherosclerosis formation; however, the existence, origin, and function of putative atherogenic antibodies are controversial. How such atherosclerosis-promoting antibodies could affect the specific composition and stability of plaques, as well as the vasculature generally, remains unknown. METHODS: We addressed the overall contribution of antibodies to atherosclerosis plaque formation, composition, and stability in vivo (1) with mice that displayed a general loss of antibodies, (2) with mice that had selectively ablated germinal center-derived IgG production, or (3) through interruption of T-B-cell interactions and further studied the effects of antibody deficiency on the aorta by transcriptomics. RESULTS: Here, we demonstrate that atherosclerosis-prone mice with attenuated plasma cell function manifest reduced plaque burden, indicating that antibodies promote atherosclerotic lesion size. However, the composition of the plaque was altered in antibody-deficient mice, with an increase in lipid content and decreases in smooth muscle cells and macrophages, resulting in an experimentally validated vulnerable plaque phenotype. Furthermore, IgG antibodies enhanced smooth muscle cell proliferation in vitro in an Fc receptor-dependent manner, and antibody-deficient mice had decreased neointimal hyperplasia formation in vivo. These IgG antibodies were shown to be derived from germinal centers, and mice genetically deficient for germinal center formation had strongly reduced atherosclerosis plaque formation. mRNA sequencing of aortas revealed that antibodies are required for the sufficient expression of multiple signal-induced and growth-promoting transcription factors and that aortas undergo large-scale metabolic reprograming in their absence. Using an elastase model, we demonstrated that absence of IgG results in an increased severity of aneurysm formation. CONCLUSIONS: We propose that germinal center-derived IgG antibodies promote the size and stability of atherosclerosis plaques, through promoting arterial smooth muscle cell proliferation and maintaining the molecular identity of the aorta. These results could have implications for therapies that target B cells or B-T-cell interactions because the loss of humoral immunity leads to a smaller but less stable plaque phenotype.


Asunto(s)
Aorta/inmunología , Enfermedades de la Aorta/inmunología , Aterosclerosis/inmunología , Centro Germinal/inmunología , Inmunoglobulina G/inmunología , Placa Aterosclerótica , Animales , Antígenos CD19/genética , Antígenos CD19/metabolismo , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Centro Germinal/metabolismo , Inmunoglobulina G/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Factor 1 de Unión al Dominio 1 de Regulación Positiva/deficiencia , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Rotura Espontánea , Linfocitos T/inmunología , Linfocitos T/metabolismo
19.
FASEB J ; 33(2): 1536-1539, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30703872

RESUMEN

Although a high marine food intake is considered cardioprotective, randomized trials of ω-3 fatty acids initially generated conflicting results in terms of the role of ω-3 supplementation in cardiovascular prevention. This work demonstrates the results of the 3 most recent clinical trials with ω-3 fatty acids are put into the context of possible mechanisms mediating their beneficial cardiovascular effects. In particular, the randomized Reduction of Cardiovascular Events with EPA Intervention Trial (REDUCE-IT) showed that icosapent ethyl, which is the ethyl ester form of the ω-3 fatty acid eicosapentaenoic acid (EPA), induced a significant reduction of cardiovascular events. Importantly, EPA serves as a substrate for the formation of the specialized proresolving mediator resolvin E1 (RvE1), which stimulates the resolution of inflammation. RvE1 reduces atherosclerosis and intimal hyperplasia by means of its specific receptor ERV1/ChemR23. The decreased levels of proinflammatory and proatherosclerotic leukotrienes by ω-3 fatty acids may further contribute to a beneficial inflammatory balance. Consequently, the Rv/leukotriene ratio is emerging as a marker of nonresolving vascular inflammation. Recent experimental studies have shown that anti-inflammatory and proresolving effects of lipid mediators derived from ω-3 fatty acids inhibit atherosclerosis independently of cholesterol and triglyceride levels. The results of the 3 most recent clinical trials of ω-3 fatty acid supplementation indicate an importance of the type and dose of ω-3 supplementation and highlight the need for risk stratification in the patient selection for ω-3 supplementation for either primary or secondary prevention of cardiovascular disease.-Bäck, M., Hansson, G. K. Omega-3 fatty acids, cardiovascular risk, and the resolution of inflammation.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Ácidos Grasos Omega-3/administración & dosificación , Inflamación/prevención & control , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Factores de Riesgo
20.
Eur Heart J ; 40(4): 372-382, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30452556

RESUMEN

Aims: The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis. Methods and results: The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb-/-Apoe-/- mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb-/-Apoe-/- macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb-/-Apoe-/- CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb-/-Apoe-/- bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Conclusion: Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.


Asunto(s)
Aterosclerosis/etiología , Linfocitos T CD8-positivos/inmunología , Linfoma de Células B/complicaciones , Macrófagos/patología , Proteína Oncogénica v-cbl/metabolismo , Placa Aterosclerótica/etiología , Animales , Apoptosis , Aterosclerosis/metabolismo , Aterosclerosis/patología , Modelos Animales de Enfermedad , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA