Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Transfusion ; 64(6): 1083-1096, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38644556

RESUMEN

BACKGROUND: Blood typing is essential for safe transfusions and is performed serologically or genetically. Genotyping predominantly focuses on coding regions, but non-coding variants may affect gene regulation, as demonstrated in the ABO, FY and XG systems. To uncover regulatory loci, we expanded a recently developed bioinformatics pipeline for discovery of non-coding variants by including additional epigenetic datasets. METHODS: Multiple datasets including ChIP-seq with erythroid transcription factors (TFs), histone modifications (H3K27ac, H3K4me1), and chromatin accessibility (ATAC-seq) were analyzed. Candidate regulatory regions were investigated for activity (luciferase assays) and TF binding (electrophoretic mobility shift assay, EMSA, and mass spectrometry, MS). RESULTS: In total, 814 potential regulatory sites in 47 blood-group-related genes were identified where one or more erythroid TFs bound. Enhancer candidates in CR1, EMP3, ABCB6, and ABCC4 indicated by ATAC-seq, histone markers, and co-occupancy of 4 TFs (GATA1/KLF1/RUNX1/NFE2) were investigated but only CR1 and ABCC4 showed increased transcription. Co-occupancy of GATA1 and KLF1 was observed in the KEL promoter, previously reported to contain GATA1 and Sp1 sites. TF binding energy scores decreased when three naturally occurring variants were introduced into GATA1 and KLF1 motifs. Two of three GATA1 sites and the KLF1 site were confirmed functionally. EMSA and MS demonstrated increased GATA1 and KLF1 binding to the wild-type compared to variant motifs. DISCUSSION: This combined bioinformatics and experimental approach revealed multiple candidate regulatory regions and predicted TF co-occupancy sites. The KEL promoter was characterized in detail, indicating that two adjacent GATA1 and KLF1 motifs are most crucial for transcription.


Asunto(s)
Antígenos de Grupos Sanguíneos , Epigénesis Genética , Humanos , Antígenos de Grupos Sanguíneos/genética , Factor de Transcripción GATA1/genética , Factores de Transcripción de Tipo Kruppel/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Leukemia ; 38(5): 1115-1130, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555405

RESUMEN

Infant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype. We characterize early proteomic events of MLL::ENL-mediated transformation in fetal and adult blood progenitors and reveal that whereas adult pre-leukemic cells are mainly characterized by retained myeloid features and downregulation of ribosomal and metabolic proteins, expression of MLL::ENL in fetal LMPPs leads to enrichment of translation-associated and histone deacetylases signaling proteins, and decreased expression of inflammation and myeloid differentiation proteins. Integrating the proteome of pre-leukemic cells with their secretome and the proteomic composition of the extracellular environment of normal progenitors highlights differential regulation of Igf2 bioavailability, as well as of VLA-4 dimer and its ligandome, upon initiation of fetal- and adult-origin leukemia, with implications for human MLLr leukemia cells' ability to communicate with their environment through granule proteins. Our study has uncovered opportunities for targeting ontogeny-specific proteomic vulnerabilities in in utero-initiated and adult-onset MLLr leukemia.


Asunto(s)
Proteína de la Leucemia Mieloide-Linfoide , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Humanos , Ratones , Animales , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Reordenamiento Génico , Proteómica/métodos , Feto/metabolismo , Adulto , Femenino , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia/genética , Leucemia/patología , Leucemia/metabolismo
3.
J Biol Chem ; 299(5): 104662, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997086

RESUMEN

To chemically modulate the ubiquitin-proteasome system for the degradation of specific target proteins is currently emerging as an alternative therapeutic modality. Earlier, we discovered such properties of the stem cell-supporting small molecule UM171 and identified that members of the CoREST complex (RCOR1 and LSD1) are targeted for degradation. UM171 supports the in vitro propagation of hematopoietic stem cells by transiently perturbing the differentiation-promoting effects of CoREST. Here, we employed global proteomics to map the UM171-targeted proteome and identified the additional target proteins, namely RCOR3, RREB1, ZNF217, and MIER2. Further, we discovered that critical elements recognized by Cul3KBTBD4 ligase in the presence of UM171 are located within the EGL-27 and MTA1 homology 2 (ELM2) domain of the substrate proteins. Subsequent experiments identified conserved amino acid sites in the N-terminus of the ELM2 domain that are essential for UM171-mediated degradation. Overall, our findings provide a detailed account on the ELM2 degrome targeted by UM171 and identify critical sites required for UM171-mediated degradation of specific substrates. Given the target profile, our results are highly relevant in a clinical context and point towards new therapeutic applications for UM171.


Asunto(s)
Proteínas Portadoras , Proteínas Cullin , Células Madre Hematopoyéticas , Dominios Proteicos , Proteínas Quinasas , Proteolisis , Diferenciación Celular/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Especificidad por Sustrato , Ubiquitina/metabolismo , Proteínas Cullin/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Quinasas/química
4.
Exp Hematol ; 115: 20-29, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36041657

RESUMEN

The molecular mechanisms regulating key fate decisions of hematopoietic stem cells (HSCs) remain incompletely understood. Here, we targeted global shRNA libraries to primary human hematopoietic stem and progenitor cells (HSPCs) to screen for modifiers of self-renewal and differentiation, and identified metastasis-associated 1 (MTA1) as a negative regulator of human HSPC propagation in vitro. Knockdown of MTA1 by independent shRNAs in primary human cord blood (CB) HSPCs led to a cell expansion during culture and a relative accumulation of immature CD34+CD90+ cells with perturbed in vitro differentiation potential. Transplantation experiments in immunodeficient mice revealed a significant reduction in human chimerism in both blood and bone marrow from HSPCs with knockdown of MTA1, possibly caused by reduced maturation of blood cells. We further found that MTA1 associates with the nucleosome remodeling deacetylase (NuRD) complex in human HSPCs, and on knockdown of MTA1, we observed an increase in H3K27Ac marks coupled with a downregulation of genes linked to differentiation toward the erythroid lineage. Together, our findings identify MTA1 as a novel regulator of human HSPCs in vitro and in vivo with critical functions for differentiation commitment.


Asunto(s)
Sangre Fetal , Células Madre Hematopoyéticas , Humanos , Ratones , Animales , Interferencia de ARN , Antígenos CD34 , Diferenciación Celular/genética , Proteínas Represoras/genética , Transactivadores/genética
5.
Sci Adv ; 8(16): eabm9987, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35442741

RESUMEN

Acute myeloid leukemia (AML) arises when leukemia-initiating cells, defined by a primary genetic lesion, acquire subsequent molecular changes whose cumulative effects bypass tumor suppression. The changes that underlie AML pathogenesis not only provide insights into the biology of transformation but also reveal novel therapeutic opportunities. However, backtracking these events in transformed human AML samples is challenging, if at all possible. Here, we approached this question using a murine in vivo model with an MLL-ENL fusion protein as a primary molecular event. Upon clonal transformation, we identified and extensively verified a recurrent codon-changing mutation (Arg295Cys) in the ERM protein moesin that markedly accelerated leukemogenesis. Human cancer-associated moesin mutations at the conserved arginine-295 residue similarly enhanced MLL-ENL-driven leukemogenesis. Mechanistically, the mutation interrupted the stability of moesin and conferred a neomorphic activity to the protein, which converged on enhanced extracellular signal-regulated kinase activity. Thereby, our studies demonstrate a critical role of ERM proteins in AML, with implications also for human cancer.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Animales , Carcinogénesis/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Ratones , Proteínas de Microfilamentos , Mutación , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo
6.
Front Cell Dev Biol ; 10: 824098, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350382

RESUMEN

Fetal and adult hematopoiesis are regulated by largely distinct sets of cell-intrinsic gene regulatory networks as well as extracellular cues in their respective microenvironment. These ontogeny-specific programs drive hematopoietic stem and progenitor cells (HSPCs) in fetus and adult to divergent susceptibility to initiation and progression of hematological malignancies, such as leukemia. Elucidating how leukemogenic hits disturb the intra- and extracellular programs in HSPCs along ontogeny will provide a better understanding of the causes for age-associated differences in malignant hematopoiesis and facilitate the improvement of strategies for prevention and treatment of pediatric and adult acute leukemia. Here, we review current knowledge of the intrinsic and extrinsic programs regulating normal and malignant hematopoiesis, with a particular focus on the differences between infant and adult acute leukemia. We discuss the recent advances in mass spectrometry-based proteomics and its opportunity for resolving the interplay of cell-intrinsic and niche-associated factors in regulating malignant hematopoiesis.

7.
Sci Rep ; 11(1): 15898, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354145

RESUMEN

The YPEL family genes are highly conserved across a diverse range of eukaryotic organisms and thus potentially involved in essential cellular processes. Ypel4, one of five YPEL family gene orthologs in mouse and human, is highly and specifically expressed in late terminal erythroid differentiation (TED). In this study, we investigated the role of Ypel4 in murine erythropoiesis, providing for the first time an in-depth description of a Ypel4-null phenotype in vivo. We demonstrated that the Ypel4-null mice displayed a secondary polycythemia with macro- and reticulocytosis. While lack of Ypel4 did not affect steady-state TED in the bone marrow or spleen, the anemia-recovering capacity of Ypel4-null cells was diminished. Furthermore, Ypel4-null red blood cells (RBC) were cleared from the circulation at an increased rate, demonstrating an intrinsic defect of RBCs. Scanning electron micrographs revealed an ovalocytic morphology of Ypel4-null RBCs and functional testing confirmed reduced deformability. Even though Band 3 protein levels were shown to be reduced in Ypel4-null RBC membranes, we could not find support for a physical interaction between YPEL4 and the Band 3 protein. In conclusion, our findings provide crucial insights into the role of Ypel4 in preserving normal red cell membrane integrity.


Asunto(s)
Proteínas Portadoras/genética , Membrana Eritrocítica/fisiología , Eritropoyesis/genética , Anemia/metabolismo , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Proteínas Portadoras/metabolismo , Membrana Eritrocítica/genética , Eritrocitos/metabolismo , Eritrocitos Anormales/metabolismo , Eritropoyesis/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Policitemia/genética , Bazo
8.
Cell Rep ; 34(12): 108894, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33761361

RESUMEN

The process of hematopoiesis is subject to substantial ontogenic remodeling that is accompanied by alterations in cellular fate during both development and disease. We combine state-of-the-art mass spectrometry with extensive functional assays to gain insight into ontogeny-specific proteomic mechanisms regulating hematopoiesis. Through deep coverage of the cellular proteome of fetal and adult lympho-myeloid multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs), and granulocyte-monocyte progenitors (GMPs), we establish that features traditionally attributed to adult hematopoiesis are conserved across lymphoid and myeloid lineages, whereas generic fetal features are suppressed in GMPs. We reveal molecular and functional evidence for a diminished granulocyte differentiation capacity in fetal LMPPs and GMPs relative to their adult counterparts. Our data indicate an ontogeny-specific requirement of myosin activity for myelopoiesis in LMPPs. Finally, we uncover an ontogenic shift in the monocytic differentiation capacity of GMPs, partially driven by a differential expression of Irf8 during fetal and adult life.


Asunto(s)
Linaje de la Célula , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteómica , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Diferenciación Celular , Feto/citología , Granulocitos/citología , Células HEK293 , Humanos , Inmunofenotipificación , Factores Reguladores del Interferón/metabolismo , Cinética , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismo , Ratones Endogámicos C57BL , Monocitos/citología , Monocitos/metabolismo , Células Progenitoras Mieloides/citología , Células Progenitoras Mieloides/metabolismo , Proteoma/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
9.
Blood ; 136(13): 1507-1519, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32556243

RESUMEN

Acute myeloid leukemia is characterized by the accumulation of clonal myeloid blast cells unable to differentiate into mature leukocytes. Chemotherapy induces remission in the majority of patients, but relapse rates are high and lead to poor clinical outcomes. Because this is primarily caused by chemotherapy-resistant leukemic stem cells (LSCs), it is essential to eradicate LSCs to improve patient survival. LSCs have predominantly been studied at the transcript level, thus information about posttranscriptionally regulated genes and associated networks is lacking. Here, we extend our previous report on LSC proteomes to healthy age-matched hematopoietic stem and progenitor cells (HSPCs) and correlate the proteomes to the corresponding transcriptomes. By comparing LSCs to leukemic blasts and healthy HSPCs, we validate candidate LSC markers and highlight novel and potentially targetable proteins that are absent or only lowly expressed in HSPCs. In addition, our data provide strong evidence that LSCs harbor a characteristic energy metabolism, adhesion molecule composition, as well as RNA-processing properties. Furthermore, correlating proteome and transcript data of the same individual samples highlights the strength of proteome analyses, which are particularly potent in detecting alterations in metabolic pathways. In summary, our study provides a comprehensive proteomic and transcriptomic characterization of functionally validated LSCs, blasts, and healthy HSPCs, representing a valuable resource helping to design LSC-directed therapies.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Metabolismo Energético , Regulación Leucémica de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Proteoma/genética , Proteoma/metabolismo , Proteómica , Transcriptoma
10.
Haematologica ; 105(5): 1206-1215, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31371413

RESUMEN

Human bone marrow stromal cells (BMSC) are key elements of the hematopoietic environment and they play a central role in bone and bone marrow physiology. However, how key stromal cell functions are regulated is largely unknown. We analyzed the role of the immediate early response transcription factor EGR1 as key stromal cell regulator and found that EGR1 was highly expressed in prospectively-isolated primary BMSC, down-regulated upon culture, and low in non-colony-forming CD45neg stromal cells. Furthermore, EGR1 expression was lower in proliferative regenerating adult and fetal primary cells compared to adult steady-state BMSC. Overexpression of EGR1 in stromal cells induced potent hematopoietic stroma support as indicated by an increased production of transplantable CD34+CD90+ hematopoietic stem cells in expansion co-cultures. The improvement in bone marrow stroma support function was mediated by increased expression of hematopoietic supporting genes, such as VCAM1 and CCL28 Furthermore, EGR1 overexpression markedly decreased stromal cell proliferation whereas EGR1 knockdown caused the opposite effects. These findings thus show that EGR1 is a key stromal transcription factor with a dual role in regulating proliferation and hematopoietic stroma support function that is controlling a genetic program to co-ordinate the specific functions of BMSC in their different biological contexts.


Asunto(s)
Células Madre Mesenquimatosas , Adulto , Antígenos CD34 , Células de la Médula Ósea , Proliferación Celular , Células Madre Hematopoyéticas , Humanos , Células del Estroma
11.
Nat Commun ; 10(1): 3182, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320637

RESUMEN

DNA methylation contributes to the maintenance of genomic integrity in somatic cells, in part through the silencing of transposable elements. In this study, we use CRISPR-Cas9 technology to delete DNMT1, the DNA methyltransferase key for DNA methylation maintenance, in human neural progenitor cells (hNPCs). We observe that inactivation of DNMT1 in hNPCs results in viable, proliferating cells despite a global loss of DNA CpG-methylation. DNA demethylation leads to specific transcriptional activation and chromatin remodeling of evolutionarily young, hominoid-specific LINE-1 elements (L1s), while older L1s and other classes of transposable elements remain silent. The activated L1s act as alternative promoters for many protein-coding genes involved in neuronal functions, revealing a hominoid-specific L1-based transcriptional network controlled by DNA methylation that influences neuronal protein-coding genes. Our results provide mechanistic insight into the role of DNA methylation in silencing transposable elements in somatic human cells, as well as further implicating L1s in human brain development and disease.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , Desmetilación del ADN , Metilación de ADN/genética , Elementos de Nucleótido Esparcido Largo/genética , Células-Madre Neurales/citología , Encéfalo/embriología , Sistemas CRISPR-Cas/genética , Ensamble y Desensamble de Cromatina/genética , Islas de CpG/genética , Silenciador del Gen/fisiología , Humanos , Células-Madre Neurales/metabolismo , Activación Transcripcional/genética
12.
Mol Cell Proteomics ; 17(12): 2358-2370, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30135203

RESUMEN

The adipose organ, including white and brown adipose tissues, is an important player in systemic energy homeostasis, storing excess energy in form of lipids while releasing energy upon various energy demands. Recent studies have demonstrated that white and brown adipocytes also function as endocrine cells and regulate systemic metabolism by secreting factors that act locally and systemically. However, a comparative proteomic analysis of secreted factors from white and brown adipocytes and their responsiveness to adrenergic stimulation has not been reported yet. Therefore, we studied and compared the secretome of white and brown adipocytes, with and without norepinephrine (NE) stimulation. Our results reveal that carbohydrate-metabolism-regulating proteins are preferably secreted from white adipocytes, while brown adipocytes predominantly secrete a large variety of proteins. Upon NE stimulation, an increased secretion of known adipokines is favored by white adipocytes while brown adipocytes secreted higher amounts of novel adipokines. Furthermore, the secretory response between NE-stimulated and basal state was multifaceted addressing lipid and glucose metabolism, adipogenesis, and antioxidative reactions. Intriguingly, NE stimulation drastically changed the secretome in brown adipocytes. In conclusion, our study provides a comprehensive catalogue of novel adipokine candidates secreted from white and brown adipocytes with many of them responsive to NE. Given the beneficial effects of brown adipose tissue activation on its endocrine function and systemic metabolism, this study provides an archive of novel batokine candidates and biomarkers for activated brown adipose tissue.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Adipoquinas/análisis , Vías Secretoras/fisiología , Adipoquinas/biosíntesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Muerte Celular , Células Cultivadas , Cromatografía Liquida , Leptina/análisis , Modelos Lineales , Masculino , Ratones , Ratones Endogámicos C57BL , Norepinefrina/farmacología , Oxidación-Reducción , Resistina/análisis , Espectrometría de Masas en Tándem
13.
Nature ; 560(7718): E28, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069041

RESUMEN

In Extended Data Fig. 1a of this Letter, the flow cytometry plot depicting the surface phenotype of AML sample DD08 was a duplicate of the plot for AML sample DD06. Supplementary Data 4 has been added to the Supplementary Information of the original Letter to clarify the proteome data acquisition and presentation. The original Letter has been corrected online.

14.
Nat Commun ; 9(1): 1770, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720585

RESUMEN

Activating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements (KMT2A-R). These mutations are often subclonal and their biological impact remains unclear. Using a retroviral acute myeloid mouse leukemia model, we demonstrate that FLT3 ITD , FLT3 N676K , and NRAS G12D accelerate KMT2A-MLLT3 leukemia onset. Further, also subclonal FLT3 N676K mutations accelerate disease, possibly by providing stimulatory factors. Herein, we show that one such factor, MIF, promotes survival of mouse KMT2A-MLLT3 leukemia initiating cells. We identify acquired de novo mutations in Braf, Cbl, Kras, and Ptpn11 in KMT2A-MLLT3 leukemia cells that favored clonal expansion. During clonal evolution, we observe serial genetic changes at the Kras G12D locus, consistent with a strong selective advantage of additional Kras G12D . KMT2A-MLLT3 leukemias with signaling mutations enforce Myc and Myb transcriptional modules. Our results provide new insight into the biology of KMT2A-R leukemia with subclonal signaling mutations and highlight the importance of activated signaling as a contributing driver.


Asunto(s)
Evolución Clonal , Reordenamiento Génico , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Mieloide/genética , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Enfermedad Aguda , Animales , Línea Celular Tumoral , Células Cultivadas , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
15.
Cell ; 173(5): 1204-1216.e26, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29628141

RESUMEN

Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease.


Asunto(s)
Transferasas Intramoleculares/metabolismo , Biosíntesis de Proteínas , Seudouridina/metabolismo , ARN de Transferencia/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Factores Eucarióticos de Iniciación/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Transferasas Intramoleculares/antagonistas & inhibidores , Transferasas Intramoleculares/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Síndromes Mielodisplásicos/patología , Conformación de Ácido Nucleico , Fosfoproteínas/metabolismo , Proteína I de Unión a Poli(A)/antagonistas & inhibidores , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Nicho de Células Madre
16.
Nicotine Tob Res ; 20(5): 606-613, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-28595356

RESUMEN

Introduction: Bupropion and varenicline are non-nicotine medications used for smoking cessation that mitigate craving and withdrawal symptoms. We aim to investigate whether these drugs increase the risk of selected acute adverse outcomes when used in medical practice. Methods: Population-based case-crossover design using data from Swedish health and administrative registers. Adult individuals diagnosed with acute myocardial infarction, stroke, suicide, suicide attempt, fall injury, or that suffered a road traffic crash from 01.10.2006 for bupropion, or from 01.03.2008 for varenicline, until 31.12.2013 were included. Different lengths of exposure periods were analyzed within the 12-week hazard period prior to the adverse outcome (1-14, 15-28, and 29-84 days). The control period was matched using the interval preceding the hazard period (85-168 days), and breaking it up into equivalent periods (85-98, 99-112, and 113-168 days). Conditional logistic regression with each case considered as one stratum was used to estimate adjusted odds ratios (OR) and confidence intervals (CI). Results: Neither medication was associated with consistent higher risks for any of the adverse outcomes. For bupropion and varenicline, respectively, in the 1-14 days hazard period, OR (95% CI) were: myocardial infarction 1.14 (0.55 to 2.34) and 1.06 (0.70 to 1.62); stroke 1.16 (0.39 to 3.47) and 1.26 (0.72 to 2.17), and traffic crashes 0.85 (0.39 to 1.85) and 1.48 (0.90 to 2.41). In the other periods, ORs were similar or even lower. For falls and suicidal events ORs were generally below one for both drugs. Conclusion: The available evidence suggests that if prescription guidelines are properly followed regarding potential contraindications both of these medications could be considered relatively safe. Implications: The reliable exposure and diagnosis assessment used in this nationwide register-based study, along with the number of cases gathered makes this sample one of the largest of its type to assess potential side effects associated with the use of these drugs. Neither medication was associated with consistent higher risks for any of the adverse outcomes studied.


Asunto(s)
Bupropión , Enfermedades Cardiovasculares/epidemiología , Agentes para el Cese del Hábito de Fumar , Vareniclina , Heridas y Lesiones/epidemiología , Accidentes por Caídas/estadística & datos numéricos , Accidentes de Tránsito/estadística & datos numéricos , Adulto , Bupropión/efectos adversos , Bupropión/uso terapéutico , Estudios Cruzados , Humanos , Cese del Hábito de Fumar/métodos , Agentes para el Cese del Hábito de Fumar/efectos adversos , Agentes para el Cese del Hábito de Fumar/uso terapéutico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Intento de Suicidio/estadística & datos numéricos , Suecia/epidemiología , Tabaquismo/tratamiento farmacológico , Vareniclina/efectos adversos , Vareniclina/uso terapéutico
17.
Cell Rep ; 21(11): 3285-3297, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29241553

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) in the fetus and adult possess distinct molecular landscapes that regulate cell fate and change their susceptibility to initiation and progression of hematopoietic malignancies. Here, we applied in-depth quantitative proteomics to comprehensively describe and compare the proteome of fetal and adult HSPCs. Our data uncover a striking difference in complexity of the cellular proteomes, with more diverse adult-specific HSPC proteomic signatures. The differential protein content in fetal and adult HSPCs indicate distinct metabolic profiles and protein complex stoichiometries. Additionally, adult characteristics include an arsenal of proteins linked to viral and bacterial defense, as well as protection against ROS-induced protein oxidation. Further analyses show that interferon α, as well as Neutrophil elastase, has distinct functional effects in fetal and adult HSPCs. This study provides a rich resource aimed toward an enhanced mechanistic understanding of normal and malignant hematopoiesis during fetal and adult life.


Asunto(s)
Envejecimiento/genética , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Proteoma/genética , Factores de Edad , Envejecimiento/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Embrión de Mamíferos , Feto , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Células Madre Hematopoyéticas/citología , Interferón-alfa/genética , Interferón-alfa/metabolismo , Elastasa de Leucocito/genética , Elastasa de Leucocito/metabolismo , Ratones Endogámicos C57BL , Proteoma/metabolismo , Proteómica/métodos
18.
Nature ; 551(7680): 384-388, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29144447

RESUMEN

The branched-chain amino acid (BCAA) pathway and high levels of BCAA transaminase 1 (BCAT1) have recently been associated with aggressiveness in several cancer entities. However, the mechanistic role of BCAT1 in this process remains largely uncertain. Here, by performing high-resolution proteomic analysis of human acute myeloid leukaemia (AML) stem-cell and non-stem-cell populations, we find the BCAA pathway enriched and BCAT1 protein and transcripts overexpressed in leukaemia stem cells. We show that BCAT1, which transfers α-amino groups from BCAAs to α-ketoglutarate (αKG), is a critical regulator of intracellular αKG homeostasis. Further to its role in the tricarboxylic acid cycle, αKG is an essential cofactor for αKG-dependent dioxygenases such as Egl-9 family hypoxia inducible factor 1 (EGLN1) and the ten-eleven translocation (TET) family of DNA demethylases. Knockdown of BCAT1 in leukaemia cells caused accumulation of αKG, leading to EGLN1-mediated HIF1α protein degradation. This resulted in a growth and survival defect and abrogated leukaemia-initiating potential. By contrast, overexpression of BCAT1 in leukaemia cells decreased intracellular αKG levels and caused DNA hypermethylation through altered TET activity. AML with high levels of BCAT1 (BCAT1high) displayed a DNA hypermethylation phenotype similar to cases carrying a mutant isocitrate dehydrogenase (IDHmut), in which TET2 is inhibited by the oncometabolite 2-hydroxyglutarate. High levels of BCAT1 strongly correlate with shorter overall survival in IDHWTTET2WT, but not IDHmut or TET2mut AML. Gene sets characteristic for IDHmut AML were enriched in samples from patients with an IDHWTTET2WTBCAT1high status. BCAT1high AML showed robust enrichment for leukaemia stem-cell signatures, and paired sample analysis showed a significant increase in BCAT1 levels upon disease relapse. In summary, by limiting intracellular αKG, BCAT1 links BCAA catabolism to HIF1α stability and regulation of the epigenomic landscape, mimicking the effects of IDH mutations. Our results suggest the BCAA-BCAT1-αKG pathway as a therapeutic target to compromise leukaemia stem-cell function in patients with IDHWTTET2WT AML.


Asunto(s)
Metilación de ADN , Isocitrato Deshidrogenasa/genética , Ácidos Cetoglutáricos/metabolismo , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/metabolismo , Transaminasas/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epistasis Genética , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/enzimología , Leucemia Mieloide Aguda/metabolismo , Ratones , Terapia Molecular Dirigida , Mutación , Células Madre Neoplásicas/patología , Pronóstico , Proteolisis , Proteómica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transaminasas/deficiencia , Transaminasas/genética
19.
J Immunol ; 195(7): 3058-70, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26324778

RESUMEN

Regulatory T cells (Tregs) differentiate in the thymus, but the mechanisms that control this process are not fully understood. We generated a comprehensive quantitative and differential proteome of murine Tregs and conventional T cells. We identified 5225 proteins, 164 of which were differentially expressed in Tregs. Together with the comparative analysis of proteome and gene expression data, we identified TCF7 as a promising candidate. Genetic elimination of transcription factor 7 (TCF7) led to increased fractions of Tregs in the thymus. Reduced levels of TCF7, found in the heterozygote, resulted in a greater potential for Treg precursors to differentiate into the Treg lineage. In contrast, activation of TCF7 through ß-catenin had the opposite effect. TCF7 levels influenced the required TCR signaling strength of Treg precursors, and TCF7 deficiency broadened the repertoire and allowed lower TCR affinities to be recruited into the Treg lineage. FOXP3 was able to repress TCF7 protein expression. In summary, we propose a regulatory role for TCF7 in limiting access to the Treg lineage.


Asunto(s)
Hematopoyesis/inmunología , Factor Nuclear 1-alfa del Hepatocito/fisiología , Linfocitos T Reguladores/inmunología , Timo/inmunología , Animales , Linaje de la Célula/inmunología , Proliferación Celular , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Hematopoyesis/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteoma/análisis , Transducción de Señal/inmunología , Linfocitos T Reguladores/citología , beta Catenina/metabolismo
20.
Cell Stem Cell ; 17(4): 422-34, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26299573

RESUMEN

Infections are associated with extensive platelet consumption, representing a high risk for health. However, the mechanism coordinating the rapid regeneration of the platelet pool during such stress conditions remains unclear. Here, we report that the phenotypic hematopoietic stem cell (HSC) compartment contains stem-like megakaryocyte-committed progenitors (SL-MkPs), a cell population that shares many features with multipotent HSCs and serves as a lineage-restricted emergency pool for inflammatory insults. During homeostasis, SL-MkPs are maintained in a primed but quiescent state, thus contributing little to steady-state megakaryopoiesis. Even though lineage-specific megakaryocyte transcripts are expressed, protein synthesis is suppressed. In response to acute inflammation, SL-MkPs become activated, resulting in megakaryocyte protein production from pre-existing transcripts and a maturation of SL-MkPs and other megakaryocyte progenitors. This results in an efficient replenishment of platelets that are lost during inflammatory insult. Thus, our study reveals an emergency machinery that counteracts life-threatening platelet depletions during acute inflammation.


Asunto(s)
Plaquetas/patología , Inflamación/patología , Células Progenitoras de Megacariocitos/patología , Trombopoyesis , Animales , Plaquetas/fisiología , Linaje de la Célula , Proliferación Celular , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/fisiología , Células Progenitoras de Megacariocitos/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...