Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(1): e0297023, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232069

RESUMEN

OBJECTIVES: Emerging results indicate that, in COVID-19, thromboembolic complications contribute to the high mortality and morbidity. Previous research showed that the prevalence of pulmonary embolism (PE) is between 25-50% in COVID-19 patients, however, most of these reports are based on data from patients with severe pneumonia, treated in intensive care units. MATERIALS AND METHODS: We conducted a retrospective, single-center, observational study to estimate the prevalence of PE in COVID-19 patients who underwent CT angiography and to identify the most important predictors. Adult outpatients with COVID-19, who presented at our COVID Outpatient Clinic between 1st and 31st of March in 2021 and underwent CTA examination were included in this study. Multiple linear regression analysis was used to identify predictors of PE in COVID-19 patients. The predictors were: age, gender, disease duration, CT severity index and log-transformed quantitative D-dimer (logQDDIM) value. RESULTS: 843 COVID-19 patients were included into the study. 82.56% (693 patients) of the infected patients had a pulmonary CTA examination and D-dimer levels (mean age: 59.82 years ± 15.66). 7.61% (53 patients) of the patients had PE. 2.02% (14 patients) of the patients had main branch or lobar PE. The multiple regression analysis found that only logQDDIM was a significant predictor. A logQDDIM cut-off value of 0.0169 (1.0171 ug/ml serum D-dimer) predicted PE with 99% sensitivity (p<0.0001, degree-of-freedom = 570, AUC = 0.72). CONCLUSIONS: We demonstrated in a large cohort of COVID-19 patients that a cut-off value of QDDIM of 1ug/ml can exclude pulmonary embolism in an outpatient setting, implicating that QDDIM might potentially supersede CTA as a screening approach in COVID-19 outpatient clinics.


Asunto(s)
COVID-19 , Embolia Pulmonar , Adulto , Humanos , Persona de Mediana Edad , Angiografía por Tomografía Computarizada , COVID-19/diagnóstico , Pacientes Ambulatorios , Estudios Retrospectivos , Embolia Pulmonar/diagnóstico por imagen , Productos de Degradación de Fibrina-Fibrinógeno/análisis
2.
Neuropharmacology ; 192: 108612, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34023338

RESUMEN

Dimethyltryptamine (DMT), an endogenous ligand of sigma-1 receptors (Sig-1Rs), acts against systemic hypoxia, but whether DMT may prevent cerebral ischemic injury is unexplored. Here global forebrain ischemia was created in anesthetized rats and aggravated with the induction of spreading depolarizations (SDs) and subsequent short hypoxia before reperfusion. Drugs (DMT, the selective Sig-1R agonist PRE-084, the Sig-1R antagonist NE-100, or the serotonin receptor antagonist asenapine) were administered intravenously alone or in combination while physiological variables and local field potential from the cerebral cortex was recorded. Neuroprotection and the cellular localization of Sig-1R were evaluated with immunocytochemistry. Plasma and brain DMT content was measured by 2D-LC-HRMS/MS. The affinity of drugs for cerebral Sig-1R was evaluated with a radioligand binding assay. Both DMT and PRE-084 mitigated SDs, counteracted with NE-100. Further, DMT attenuated SD when co-administered with asenapine, compared to asenapine alone. DMT reduced the number of apoptotic and ferroptotic cells and supported astrocyte survival. The binding affinity of DMT to Sig-1R matched previously reported values. Sig-1Rs were associated with the perinuclear cytoplasm of neurons, astrocytes and microglia, and with glial processes. According to these data, DMT may be considered as adjuvant pharmacological therapy in the management of acute cerebral ischemia.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Depresión de Propagación Cortical/efectos de los fármacos , N,N-Dimetiltriptamina/farmacología , Enfermedades Neurodegenerativas/metabolismo , Receptores sigma/metabolismo , Animales , Encéfalo/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Depresión de Propagación Cortical/fisiología , Relación Dosis-Respuesta a Droga , Masculino , N,N-Dimetiltriptamina/uso terapéutico , Enfermedades Neurodegenerativas/prevención & control , Ratas , Ratas Sprague-Dawley , Receptores sigma/agonistas , Receptor Sigma-1
3.
Biology (Basel) ; 9(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322264

RESUMEN

Ischemic stroke is a leading cause of death and disability worldwide. Yet, the effective therapy of focal cerebral ischemia has been an unresolved challenge. We propose here that ischemic tissue acidosis, a sensitive metabolic indicator of injury progression in cerebral ischemia, can be harnessed for the targeted delivery of neuroprotective agents. Ischemic tissue acidosis, which represents the accumulation of lactic acid in malperfused brain tissue is significantly exacerbated by the recurrence of spreading depolarizations. Deepening acidosis itself activates specific ion channels to cause neurotoxic cellular Ca2+ accumulation and cytotoxic edema. These processes are thought to contribute to the loss of the ischemic penumbra. The unique metabolic status of the ischemic penumbra has been exploited to identify the penumbra zone with imaging tools. Importantly, acidosis in the ischemic penumbra may also be used to guide therapeutic intervention. Agents with neuroprotective promise are suggested here to be delivered selectively to the ischemic penumbra with pH-responsive smart nanosystems. The administered nanoparticels release their cargo in acidic tissue environment, which reliably delineates sites at risk of injury. Therefore, tissue pH-targeted drug delivery is expected to enrich sites of ongoing injury with the therapeutical agent, without the risk of unfavorable off-target effects.

4.
Neuropharmacology ; 162: 107850, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31715193

RESUMEN

Stroke is an important cause of mortality and disability. Treatment options are limited, therefore the progress in this regard is urgently needed. Nimodipine, an L-type voltage-gated calcium channel antagonist dilates cerebral arterioles, but its systemic administration may cause potential side effects. We have previously constructed chitosan nanoparticles as drug carriers, which release nimodipine in response to decreasing pH typical of cerebral ischemia. Here we have set out to evaluate this nanomedical approach to deliver nimodipine selectively to acidic ischemic brain tissue. After washing a nanoparticle suspension with or without nimodipine (100 µM) on the exposed brain surface of anesthetized rats (n = 18), both common carotid arteries were occluded to create forebrain ischemia. Spreading depolarizations (SDs) were elicited by 1M KCl to deepen the ischemic insult. Local field potential, cerebral blood flow (CBF) and tissue pH were recorded from the cerebral cortex. Microglia activation and neuronal survival were evaluated in brain sections by immunocytochemistry. Ischemia-induced tissue acidosis initiated nimodipine release from nanoparticles, confirmed by the significant elevation of baseline CBF (47.8 ±â€¯23.7 vs. 29.3 ±â€¯6.96%). Nimodipine shortened the duration of both SD itself (48.07 ±â€¯23.29 vs. 76.25 ±â€¯17.2 s), and the associated tissue acidosis (65.46 ±â€¯20.2 vs. 138.3 ±â€¯66.07 s), moreover it enhanced the SD-related hyperemia (48.15 ±â€¯42.04 vs. 17.29 ±â€¯11.03%). Chitosan nanoparticles did not activate microglia. The data support the concept that tissue acidosis linked to cerebral ischemia can be employed as a trigger for targeted drug delivery. Nimodipine-mediated vasodilation and SD inhibition can be achieved by pH-responsive chitosan nanoparticles applied directly to the brain surface.


Asunto(s)
Acidosis/metabolismo , Isquemia Encefálica/metabolismo , Bloqueadores de los Canales de Calcio/administración & dosificación , Quitosano/metabolismo , Microglía/efectos de los fármacos , Nanopartículas/metabolismo , Nimodipina/administración & dosificación , Prosencéfalo/efectos de los fármacos , Acidosis/etiología , Animales , Materiales Biocompatibles , Isquemia Encefálica/complicaciones , Isquemia Encefálica/patología , Arteria Carótida Común , Supervivencia Celular , Circulación Cerebrovascular , Depresión de Propagación Cortical/efectos de los fármacos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Neuronas/efectos de los fármacos , Neuronas/patología , Prosencéfalo/irrigación sanguínea , Prosencéfalo/patología , Ratas
5.
Br J Pharmacol ; 176(9): 1222-1234, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30737967

RESUMEN

BACKGROUND AND PURPOSE: A new class of dihydropyridine derivatives, which act as co-inducers of heat shock protein but are devoid of calcium channel antagonist and vasodilator effects, has recently been developed with the purpose of selectively targeting neurodegeneration. Here, we evaluated the action of one of these novel compounds LA1011 on neurovascular coupling in the ischaemic rat cerebral cortex. As a reference, we applied nimodipine, a vasodilator dihydropyridine and well-known calcium channel antagonist. EXPERIMENTAL APPROACH: Rats were treated with LA1011 or nimodipine, either by chronic, systemic (LA1011), or acute, local administration (LA1011 and nimodipine). In the latter treatment group, global forebrain ischaemia was induced in half of the animals by bilateral common carotid artery occlusion under isoflurane anaesthesia. Functional hyperaemia in the somatosensory cortex was created by mechanical stimulation of the contralateral whisker pad under α-chloralose anaesthesia. Spreading depolarization (SD) events were elicited subsequently by 1 M KCl. Local field potential and cerebral blood flow (CBF) in the parietal somatosensory cortex were monitored by electrophysiology and laser Doppler flowmetry. KEY RESULTS: LA1011 did not alter CBF, but intensified SD, presumably indicating the co-induction of heat shock proteins, and, perhaps an anti-inflammatory effect. Nimodipine attenuated evoked potentials and SD. In addition to the elevation of baseline CBF, nimodipine augmented hyperaemia in response to both somatosensory stimulation and SD, particularly under ischaemia. CONCLUSIONS AND IMPLICATIONS: In contrast to the CBF improvement achieved with nimodipine, LA1011 seems not to have discernible cerebrovascular effects but may up-regulate the stress response.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Dihidropiridinas/farmacología , Corteza Somatosensorial/efectos de los fármacos , Animales , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...