Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(2): e0059423, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38193669

RESUMEN

Understanding how bacteria evolve resistance to phages has implications for phage-based therapies and microbial evolution. In this study, the susceptibility of 335 Salmonella isolates to the wide host range Salmonella phage BPSELC-1 was tested. Potentially significant gene sets that could confer resistance were identified using bioinformatics approaches based on phage susceptibility phenotypes; more than 90 potential antiphage defense gene sets, including those involved in lipopolysaccharide (LPS) biosynthesis, DNA replication, secretion systems, and respiratory chain, were found. The evolutionary dynamics of Salmonella resistance to phage were assessed through laboratory evolution experiments, which showed that phage-resistant mutants rapidly developed and exhibited genetic heterogeneity. Most representative Salmonella hosts (58.1% of 62) rapidly developed phage resistance within 24 h. All phage-resistant mutant clones exhibited genetic heterogeneity and observed mutations in LPS-related genes (rfaJ and rfaK) as well as other genes such as cellular respiration, transport, and cell replication-related genes. The study also identified potential trade-offs, indicating that bacteria tend to escape fitness trade-offs through multi-site mutations, all tested mutants increased sensitivity to polymyxin B, but this does not always affect their relative fitness or biofilm-forming capacity. Furthermore, complementing the rfaJ mutant gene could partially restore the phage sensitivity of phage-resistant mutants. These results provide insight into the phage resistance mechanisms of Salmonella and the complexity of bacterial evolution resulting from phage predation, which can inform future strategies for phage-based therapies and microbial evolution.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Lipopolisacáridos , Salmonella , Mutación , Fenotipo , Bacterias
2.
Front Microbiol ; 14: 1277782, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965547

RESUMEN

Bacillus subtilis (B. subtilis) is a commercially important probiotic known to produce secondary metabolites with antibacterial, antifungal and anti-inflammatory activities. However, the potential ability of B. subtilis to combat viruses, especially DNA viruses, has not been extensively investigated. In this study, we identified two distinct B. subtilis strains and examined the efficiency of their secondary metabolites against pseudorabies virus (PRV), a swine herpesvirus resulting in economic losses worldwide. We found that treatment with the secondary metabolites of B. subtilis L2, but not the metabolites of B. subtilis V11, significantly inhibited PRV replication in multiple cells. Notably, the antiviral activity of the metabolites of B. subtilis L2 was thermal stable, resistant to protease digestion. Moreover, these metabolites effectively impeded PRV binding, entry and replication. Importantly, oral administration of the metabolites of B. subtilis L2 protected mice from lethal PRV infection, rescuing weight loss and reducing the viral load in vivo. In summary, our results reveal that the metabolites of B. subtilis L2 exhibit anti-PRV activity both in vitro and in vivo, providing a potential candidate for novel antiviral drugs.

3.
Poult Sci ; 102(7): 102715, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37209652

RESUMEN

Antibiotic treatment failure is increasingly encountered for the emergence of pandrug-resistant isolates, including the prototypical broad-host-range Salmonella enterica serovar (S.) Typhimurium, which mainly transmitted to humans through poultry products. In this study we explored the therapeutic potential of a Salmonella phage composition containing a virulent phage and a nonproductive phage that does not produce progeny phage against chicks infected with a pandrug-resistant S. Typhimurium strain of avian origin. After approximately 107 CFU of S. Typhimurium strain ST149 were administrated to chicks by intraperitoneal injection, the phage combination (∼108 PFU) was gavaged at 8-h, 32-h, and 54-h postinfection. At d 10 postinfection, phage treatment completely protected chicks from Salmonella-induced death compared to 91.7% survival in the Salmonella challenge group. In addition, phage treatment also greatly reduced the bacterial load in various organs, with Salmonella colonization levels decreasing more significantly in spleen and bursa than in liver and cecal contents, possibly due to higher phage titers in these immune organs. However, phages could not alleviate the decreased body weight gain and the enlargement of spleen and bursa of infected chicks. Further examination of the bacterial flora in the cecal contents of chicks found that S. Typhimurium infection caused a remarkable decrease in abundance of Clostridia vadin BB60 group and Mollicutes RF39 (the dominant genus in chicks), making Lactobacillus the dominate genus. Although phage treatment partially restored the decline of Clostridia vadin BB60 group and Mollicutes RF39 and increased abundance of Lactobacillus caused by S. Typhimurium infection, Fournierella that may aggravate intestinal inflammation became the major genus, followed by increased Escherichia-Shigella as the second dominate bacterial genus. These results suggested that successive phage treatment modulated the structural composition and abundance of bacterial communities, but failed to normalize the intestinal microbiome disrupted by S. Typhimurium infection. Phages need to be combined with other means to control the spread of S. Typhimurium in poultry.


Asunto(s)
Bacteriófagos , Enfermedades de las Aves de Corral , Salmonelosis Animal , Fagos de Salmonella , Humanos , Animales , Pollos/microbiología , Salmonella typhimurium , Ciego/microbiología , Carga Bacteriana/veterinaria , Salmonelosis Animal/microbiología , Enfermedades de las Aves de Corral/terapia , Enfermedades de las Aves de Corral/microbiología
4.
Biology (Basel) ; 12(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36829587

RESUMEN

Phage therapy is widely being reconsidered as an alternative to antibiotics for the treatment of multidrug-resistant bacterial infections, including salmonellosis caused by Salmonella. As facultative intracellular parasites, Salmonella could spread by vertical transmission and pose a great threat to both human and animal health; however, whether phage treatment might provide an optional strategy for controlling bacterial vertical infection remains unknown. Herein, we explored the effect of phage therapy on controlling the vertical transmission of Salmonella enterica serovar Gallinarum biovar Pullorum (S. Pullorum), a poultry pathogen that causes economic losses worldwide due to high mortality and morbidity. A Salmonella phage CKT1 with lysis ability against several S. enterica serovars was isolated and showed that it could inhibit the proliferation of S. Pullorum in vitro efficiently. We then evaluated the effect of phage CKT1 on controlling the vertical transmission of S. Pullorum in an adult broiler breeder model. The results demonstrated that phage CKT1 significantly alleviated hepatic injury and decreased bacterial load in the liver, spleen, heart, ovary, and oviduct of hens, implying that phage CKT1 played an active role in the elimination of Salmonella colonization in adult chickens. Additionally, phage CKT1 enabled a reduction in the Salmonella-specific IgG level in the serum of infected chickens. More importantly, the decrease in the S. Pullorum load on eggshells and in liquid whole eggs revealed that phage CKT1 effectively controlled the vertical transmission of S. Pullorum from hens to laid eggs, indicating the potential ability of phages to control bacterial vertical transmission.

5.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674973

RESUMEN

Bone health problems are a serious threat to laying hens; microbiome-based therapies, which are harmless and inexpensive, may be an effective solution for bone health problems. Here, we examined the impacts of supplementation with Clostridium butyricum (CB) on bone and immune homeostasis in pullets. The results of in vivo experiments showed that feeding the pullets CB was beneficial to the development of the tibia and upregulated the levels of the bone formation marker alkaline phosphatase and the marker gene runt-related transcription factor 2 (RUNX2). For the immune system, CB treatment significantly upregulated IL-10 expression and significantly increased the proportion of T regulatory (Treg) cells in the spleen and peripheral blood lymphocytes. In the in vitro test, adding CB culture supernatant or butyrate to the osteoblast culture system showed no significant effects on osteoblast bone formation, while adding lymphocyte culture supernatant significantly promoted bone formation. In addition, culture supernatants supplemented with treated lymphocytes (pretreated with CB culture supernatants) stimulated higher levels of bone formation. In sum, the addition of CB improved bone health by modulating cytokine expression and the ratio of Treg cells in the immune systems of layer pullets. Additionally, in vitro CB could promote the bone formation of laying hen osteoblasts through the mediation of lymphocytes.


Asunto(s)
Pollos , Clostridium butyricum , Animales , Femenino , Pollos/metabolismo , Suplementos Dietéticos , Desarrollo Óseo , Citocinas/metabolismo
6.
Vet Microbiol ; 276: 109632, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36521295

RESUMEN

The S. Enteritidis causes serious economic losses to the poultry industry every year. Vaccines that induce a mucosal immune response may be successful against an S. Enteritidis infection because mucosa plays an important role in preventing S. Enteritidis from entering the body. In order to develop novel and potent oral vaccines based on Bacillus subtilis (B. subtilis) to control the spread of S. Enteritidis in the poultry industry, we constructed a B. subtilis that can secrete a multi-epitope protein (OmpC-FliC-SopF-SseB-IL-18). Oral immunization of chickens was performed, and serum antibodies, mucosal antibodies, specific cellular immunity and serum cytokines were detected. Immunizing chicks with S. Enteritidis was evaluated. The results showed high levels of specific IgG in addition to high levels of specific secretory immunoglobulin A (sIgA) in chickens who received oral administrations of recombinant B. subtilis. Additionally, recombinant B. subtilis may significantly increase the levels of IL-2 and T cell-mediated immunity. Recombinant B. subtilis effectively protected chickens against S. Enteritidis and reduced pathological damage to the spleen and jejunum. Our study's outcomes indicate that the expression of the multi-epitope protein OmpC-FliC-SopF-SseB-IL-18 by B. subtilis could generate a mucosal vaccine candidate for animals to defend against S. Enteritidis in the future.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Vacunas contra la Salmonella , Animales , Salmonella enteritidis , Bacillus subtilis , Interleucina-18 , Epítopos , Pollos , Administración Oral , Inmunidad Mucosa , Salmonelosis Animal/prevención & control , Enfermedades de las Aves de Corral/prevención & control
7.
Poult Sci ; 102(2): 102308, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36470026

RESUMEN

Salmonella Pullorum is one of the most important avian pathogenic bacteria due to widespread outbreaks accompanied by high mortality. It has been demonstrated that the Salmonella Enteritidis live vaccine strain Sm24/Rif12/Ssq is able to induce cross-immunity protection against Salmonella Gallinarum and Salmonella Infantis, however, it is unknown whether this vaccine is effective against Salmonella Pullorum infection. In the present study, the Hubbard parent chickens were orally administrated this vaccine at 1-day-old, 40-day-old, and 131-day-old respectively, and challenged by Salmonella Pullorum at 157-day-old to evaluate the protective effect of the Salmonella Enteritidis live vaccine strain Sm24/Rif12/Ssq. After each vaccination, the vaccine strain could be recovered from cloacal swabs within a week, whereas no vaccine strain was re-isolated from environmental samples throughout the experiment. Vaccination for the breeder chickens with Salmonella Enteritidis Sm24/Rif12/Ssq could relieve swollen liver (P = 0.0066) caused by Salmonella Pullorum infection and decrease Salmonella Pullorum colonization level in spleen (P = 0.0035), whereas no significant difference was found in the bacterial counts of liver, ovary and oviduct of vaccinated chickens. These results suggested that the Salmonella Enteritidis live vaccine strain Sm24/Rif12/Ssq was high safety and effective against Salmonella Pullorum infection to a certain extent.


Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Vacunas contra la Salmonella , Femenino , Animales , Salmonella enteritidis , Pollos , Salmonelosis Animal/microbiología , Vacunas Atenuadas , Enfermedades de las Aves de Corral/microbiología
8.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361621

RESUMEN

Effective phage cocktails consisting of multiple virus types are essential for successful phage therapy against pandrug-resistant pathogens, including Salmonella enterica serovar (S.) Typhimurium. Here we show that a Salmonella phage, F118P13, with non-productive infection and a lytic phage, PLL1, combined to inhibit pandrug-resistant S. Typhimurium growth and significantly limited resistance to phages in vitro. Further, intraperitoneal injection with this unique phage combination completely protected mice from Salmonella-induced death and inhibited bacterial proliferation rapidly in various organs. Furthermore, the phage combination treatment significantly attenuated the inflammatory response, restored the generation of CD4+ T cells repressed by Salmonella, and allowed macrophages and granulocytes to participate in immunophage synergy to promote bacterial clearance. Crucially, the non-productive phage F118P13 is less likely to be cleared by the immune system in vivo, thus providing an alternative to phage cocktail against bacterial infections.


Asunto(s)
Bacteriófagos , Fagos de Salmonella , Salmonella enterica , Ratones , Animales , Salmonella typhimurium , Sistema Inmunológico
9.
Poult Sci ; 101(11): 102077, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36067578

RESUMEN

Salmonellosis causes massive economic losses globally every year. Especially in poultry, numerous drug-resistant bacteria have emerged; thus, it is imperative to find alternatives to antibiotics. As a probiotic, Clostridium butyricum (C. butyricum) provides the latest strategy for inhibiting the proliferation of Salmonella. This study aimed to evaluate the effects of C. butyricum on intestinal environment and gut microbiome under Salmonella infection. In this study, we modeled the infection of Salmonella using specific pathogen-free (SPF) chicks and found that the use of C. butyricum directly reduced the number of Salmonella colonizations in the spleen and liver. It also alleviated the histopathological changes of the liver, spleen, and cecum caused by Salmonella Enteritidis (S. Enteritidis). In addition, S. Enteritidis increased the expression of pro-inflammatory IL-6 in the cecum on day 6 postinfection. Interestingly, we found that C. butyricum changed PPAR-γ transcript levels in the cecum on day 6 postinfection. Analysis of the chick gastrointestinal microbiome showed that Salmonella infection increased the relative abundance of Subdoligranulum variabile. Further analysis found that Salmonella challenge significantly reduced the relative abundance of Faecalibacterium prausnitzii and C. butyricum increased the relative abundance of anaerobic bacteria in the gut on day 6 postinfection. Moreover, early supplementation of C. butyricum restored the epithelial hypoxia in S. Enteritidis infection in chicks. The results suggest that C. butyricum restores epithelial hypoxia caused by S. Enteritidis, improves the stability of intestinal flora, and inhibits the proliferation of Salmonella.


Asunto(s)
Clostridium butyricum , Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Salmonelosis Animal , Animales , Salmonelosis Animal/microbiología , Pollos , Enfermedades de las Aves de Corral/microbiología , Salmonella enteritidis , Ciego/microbiología , Hipoxia/veterinaria
10.
Antibiotics (Basel) ; 11(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35740235

RESUMEN

Antibiotic resistance genes of Escherichia coli (E. coli) from companion animals were still poorly understood. Here, we investigated the extended-spectrum ß-lactamases (ESBLs) resistance genes of E. coli from companion animals in Shandong, China. A total of 79 isolates (80.6%) were recovered from 98 healthy or diarrheal companion animals in 2021, among which ESBLs-producing isolates accounted for 43.0% (34/79), and more than half of ESBL E. coli (ESBL-EC) strains (n = 19) were isolated from healthy companion animals. Diarrheagenic E. coli isolates (45.6%, n = 36) were represented by enterotoxigenic (ETEC) (32.9%), enteropathogenic (EPEC) (10.1%) and enteroinvasive (EIEC) (2.6%), 20 isolates of which were from healthy pets. Among tested antibiotics, resistance to tetracycline (64.6%) was the most commonly observed, followed by doxycycline (59.5%) and ampicillin (53.2%). Notably, all isolates were susceptible to meropenem. The multidrug-resistant (MDR) rate was 49.4%, 20 isolates of which were ESBLs producers; moreover, 23.4%, 16.4% of ESBL-EC strains were resistant to 5 or more, 7 or more antibiotics, respectively. Among the 5 ß-lactamase resistance genes, the most frequent gene was blaCTX-M (60.76%), followed by blaSHV (40.51%). The plasmid-mediated quinolone resistance (PMQR) gene aac(6')-Ib-cr was detected in 35 isolates. Additionally, ESBL-associated genes (i.e., blaCTX-M, blaSHV) were found in 76.5% ESBL-EC strains, with six isolates carrying blaCTX-M and blaSHV. The marker gene of high-pathogenicity island gene irp2 (encoding iron capture systems) was the most frequency virulence gene. Our results showed that ESBL-EC were widespread in healthy or diarrhea companion animals, especially healthy pets, which may be a potential reservoir of antibiotic resistance, therefore, enhancing a risk to public and animal health.

11.
Biology (Basel) ; 11(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35205158

RESUMEN

Proteus mirabilis, an opportunistic pathogen, is found to be an emerging threat to both animals and humans for a variety of infections. However, the characteristics of P. mirabilis infections from foxes, raccoons and minks remain unclear. In this context, we identified the antibiotic resistance genes and virulence genes of P. mirabilis isolates from foxes, raccoons and minks in China. Most isolates showed resistance to florfenicol (90.57%), trimethoprim-sulfamethoxazole (73.58%), and imipenem (71.70%). A total of 73.58% of isolates were resistant to antibiotics from at least three or more classes, and were categorized as multi-drug resistant. A total of 33.33% of the isolates were resistant to antibiotics from seven classes. The most prevalent resistant were sul1 (94.34%), followed by floR, blaTEM, aac(6')Ib-cr and blaOXA-1 with the detection rate of 88.68%, 83.02%, 71.70% and 60.38%, respectively. Among the 51 P. mirabilis isolates that were resistant to beta-lactam antibiotics, all isolates carried at least one beta-lactam gene. In addition, blaNDM and blaOXA-24 genes were firstly reported in carbapenem-resistant P. mirabilis isolates from foxes, raccoons and minks. All isolates exhibited the virulence genes ureC, zapA, pmfA, atfA and mrpA. P. mirabilis isolates carrying all detected 10 virulence genes from different animal species showed different lethal abilities in a G. mellonella larvae model. More importantly, the profiles of antibiotic resistance genes of isolates from fur animals and the environment were generally similar, and phylogenetic analysis showed that the P. mirabilis isolates from farm environment samples may have close relatedness with that from animals.

12.
Poult Sci ; 101(3): 101668, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35063807

RESUMEN

Pullorum disease caused by Salmonella Pullorum remains an important disease for the poultry industry due to high morbidity and mortality in many countries. Phage therapy is becoming an alternative strategy to control multidrug-resistant Salmonella infections in young chicks. However, how bacteriophages affect the growth performance of chicks infected with S. Pullorum remains poorly understood. Herein, we assessed the therapeutic efficacy of Salmonella phage CKT1 against hypervirulent arthritis-causing S. Pullorum. The results showed that single phage treatment after hypervirulent S. Pullorum infection significantly improved body weight loss of chicks. Compared with enlarged liver and spleen in only Salmonella challenged group, phage administration substantially reduced the liver/body and spleen/body weight ratios, bacterial loads in organs and the degree of hepatic sinusoidal dilatation and congestion. Moreover, phage CKT1 can enter the organs of chicks and stay for at least 3 d in liver and spleen, and promote higher serum levels of IL-6 production within 6 d postinfection, indicating phage-induced bacterial lysis may be involved in inflammatory immune response to S. Pullorum infection. Analysis of the microbiome of gastrointestinal tract of chicks demonstrated that Salmonella challenge significantly reduced the relative abundances of Lachnoclostridium and Blautia, resulting in remarkably increased Escherichia-Shigella and Klebsiella becoming the predominant bacterial taxa. In contrast, the use of phage CKT1 significantly reduced Escherichia-Shigella and Klebsiella populations in intestine, permitting the proliferation of beneficial microbiota in Firmicutes including Lachnoclostridium, Ruminococcus, Lactobacillus, and Pseudoflavonifractor. In addition, phage alone treatments did not affect the normal gut microbiota structure of chicks, and phage therapy on Salmonella infected chicks increased bacteria species richness in the cecum. These results suggest that Salmonella phage CKT1 could improve growth performance of chicks challenged with S. Pullorum by normalizing the abnormal intestinal microbiome.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades de las Aves de Corral , Salmonelosis Animal , Fagos de Salmonella , Animales , Pollos , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/terapia , Salmonella , Salmonelosis Animal/microbiología , Pérdida de Peso
13.
Poult Sci ; 101(2): 101575, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34920386

RESUMEN

Pullorum disease is characterized by white diarrhea resulting from infection by S. Pullorum, but arthritis associated with S. Pullorum infection has become increasingly frequent recently, especially in Chinese native chicken flocks. In this study, we isolated and identified 4 S. Pullorum strains from the Qingjiaoma chicken breeders with arthritis symptoms. The LD50 of the isolate 20JS04 was 1.33 × 106 CFU, which was considered as a highly virulent strain in chicks. Reproducible arthritis symptoms were observed in the experimentally chickens infected with the isolate 20JS04, and the disease occurrence was 27.78% (5/18). In addition to the characteristics of high virulence and induced-arthritis, our results confirmed that the arthritis-causing isolate 20JS04 had greater negative impact on BW, ADFI, and ADG, compared with the white diarrhea-causing S. Pullorum standard strain CVCC526 (P < 0.05). These results suggest that the pathogenic diversity of S. Pullorum in China deserves more attention and stringent measures should be taken to control salmonellosis.


Asunto(s)
Artritis , Enfermedades de las Aves de Corral , Salmonelosis Animal , Salmonella enterica , Animales , Artritis/epidemiología , Artritis/veterinaria , Pollos , Enfermedades de las Aves de Corral/epidemiología , Salmonella , Salmonelosis Animal/epidemiología
14.
Cell Rep ; 37(12): 110147, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34936880

RESUMEN

Pathogenic bacteria can rapidly respond to stresses such as reactive oxygen species (ROS) using reversible redox-sensitive oxidation of cysteine thiol (-SH) groups in regulators. Here, we use proteomics to profile reversible ROS-induced thiol oxidation in Vibrio cholerae, the etiologic agent of cholera, and identify two modified cysteines in ArcA, a regulator of global carbon oxidation that is phosphorylated and activated under low oxygen. ROS abolishes ArcA phosphorylation but induces the formation of an intramolecular disulfide bond that promotes ArcA-ArcA interactions and sustains activity. ArcA cysteines are oxidized in cholera patient stools, and ArcA thiol oxidation drives in vitro ROS resistance, colonization of ROS-rich guts, and environmental survival. In other pathogens, such as Salmonella enterica, oxidation of conserved cysteines of ArcA orthologs also promotes ROS resistance, suggesting a common role for ROS-induced ArcA thiol oxidation in modulating ArcA activity, allowing for a balance of expression of stress- and pathogenesis-related genetic programs.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Cólera/microbiología , Proteoma/metabolismo , Proteínas Represoras/metabolismo , Salmonella enterica/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Vibrio cholerae/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Línea Celular , Cisteína/metabolismo , Heces/microbiología , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Oxidación-Reducción , Estrés Oxidativo , Fosforilación , Proteómica/métodos , Especies Reactivas de Oxígeno/metabolismo , Infecciones por Salmonella/microbiología , Vibrio cholerae/genética
15.
Antibiotics (Basel) ; 10(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34438943

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen posing an urgent threat to global public health, and the capsule is necessary for K. pneumoniae infection and virulence. Phage-derived capsule depolymerases have shown great potential as antivirulence agents in treating carbapenem-resistant K. pneumoniae (CRKP) infections. However, the therapeutic potential of phages encoding depolymerases against CRKP remains poorly understood. In this study, we identified a long-tailed phage SRD2021 specific for mucoid CRKP with capsular K47 serotype, which is the predominant infectious K-type in Asia. Genome sequencing revealed that ΦSRD2021 belonged to the Drulisvirus genus and exhibited a capsular depolymerase domain in its tail fiber protein. A transposon-insertion library of host bacteria was constructed to identify the receptor for ΦSRD2021. We found that most phage-resistant mutants converted to a nonmucoid phenotype, including the mutant in wza gene essential for capsular polysaccharides export. Further knockout and complementation experiments confirmed that the Δwza mutant avoided adsorption by ΦSRD2021, indicating that the K47 capsular polysaccharide is the necessary receptor for phage infection. ΦSRD2021 lysed the bacteria mature biofilms and showed a therapeutic effect on the prevention and treatment of CRKP infection in the Galleria mellonella model. Furthermore, ΦSRD2021 also reduced the colonized CRKP in mouse intestines significantly. By recognizing the host capsule as a receptor, our results showed that ΦSRD2021 may be used as a potential antibacterial agent for K47 serotype K. pneumoniae infections.

16.
Microb Pathog ; 155: 104897, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33878399

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen commonly associated with nosocomial infections. In our previous study, we have demonstrated that colistin-resistant K. pneumoniae is more susceptible to killing by lytic tailed phages than the colistin-sensitive parent strain, including T1-like ФNJS1. This fitness cost associated with colistin resistance is due to the alteration of the surface charge that promotes phage adherence and infection. However, the receptor for phage adsorption has not been identified. In this study, we found that ФNJS1 specifically infected nonmucoid K. pneumoniae isolates, and the accelerated phage adsorption to colistin-resistant nonmucoid K. pneumoniae cells is reversible. Further research suggested that bacteria lipopolysaccharide may be involved in phage reversible adsorption, while capsule polysaccharide may block the receptors on cell surface from phage attachment. Transposon mutagenesis of colistin-resistant K. pneumoniae revealed that mutation in wecA and wecG, two genes involved in lipopolysaccharide O-antigen biosynthesis, significantly deceased phage adsorption capacity and infection efficiency. Inactivation of wzyE, which leaded to the shorten of O-antigen chain length, enhanced phage infectivity. Moreover, mutation of the outer membrane protein FepA slowed the phage lysis rate, suggesting that FepA may be an irreversible receptor for ФNJS1. In summary, our results show a delicate balance between ФNJS1 and its hosts, where the lipopolysaccharide O-antigen may serve as an essential reversible receptor for phage NJS1, while the long O-antigen chain hinders the bacteriophage infection.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Bacteriófagos/genética , Colistina , Humanos , Klebsiella pneumoniae , Mutagénesis , Antígenos O
17.
Front Vet Sci ; 8: 607491, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33834046

RESUMEN

Salmonella is a common food-borne Gram-negative pathogen with multiple serotypes. Pullorum disease, caused by Salmonella Pullorum, seriously threatens the poultry industry. Many previous studies were focused on the epidemiological characteristics of Salmonella infections in conventional antibiotic use poultry. However, little is known about Salmonella infections in chicken flocks fed on antibiotic-free diets. Herein, we investigated and compared Salmonella infections in three Chinese native breeders fed on antibiotic-free diets, including the Luhua, Langya, and Qingjiaoma chickens, and one conventional breeder, the Bairi chicken, via analyzing 360 dead embryos in 2019. The results showed that the main Salmonella serotypes detected in a total of 155 isolates were S. Pullorum (82.6%) and S. Enteritidis (17.4%). Coinfection with two serotypes of Salmonella was specifically found in Bairi chicken. The sequence type (ST) in S. Pullorum was ST92 (n = 96) and ST2151 (n = 32), whereas only ST11 (n = 27) was found in S. Enteritidis. The Salmonella isolates from three breeder flocks fed on antibiotic-free diets exhibited phenotypic heterogeneity with a great variety of drug resistance spectrum. Most of the isolates among three chicken breeds Luhua (64.9%, 50/77), Langya (60%, 12/20) and Qingjiaoma (58.3%, 7/12) fed on antibiotic-free diets were resistant to only one antibiotic (erythromycin), whereas the rate of resistance to one antibiotic in conventional Bairi chicken isolates was only 4.3% (2/46). The multidrug-resistance rate in Salmonella isolates from layer flocks fed on antibiotic-free diets (20.2%, 22/109) was significantly (P < 0.0001) lower than that from chickens fed on conventional diets (93.5%, 43/46). However, high rate of resistance to erythromycin (97.4%~100%) and streptomycin (26%~41.7%) were also found among three breeder flocks fed on antibiotic-free diets, indicating resistance to these antibiotics likely spread before antibiotic-free feeding in poultry farms. The findings of this study supplement the epidemiological data of salmonellosis and provide an example of the characteristics of Salmonella in the chicken flocks without direct antibiotic selective pressure.

18.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31570405

RESUMEN

Colistin is a drug of last resort for the treatment of many multidrug resistant Gram-negative bacteria, including Klebsiella pneumoniae However, bacteria readily acquire resistance to this antibiotic via lipopolysaccharide modifications caused by spontaneous mutations or from enzymes acquired by lateral gene transfer. The fitness cost associated with these modifications remains poorly understood. In this study, we show that colistin-resistant K. pneumoniae are more susceptible to killing by a newly isolated lytic phage than the colistin sensitive parent strain. We observe this behavior for colistin-resistance conferred by a horizontally transferred mcr-1 containing plasmid and also from the inactivation of the chromosomal gene mgrB By measuring zeta potentials, we found that the phage particles were negatively charged at neutral pH and that colistin-resistant bacteria had less negative zeta potentials than did wildtype. These results suggest that the decreased negative surface charge of colistin-resistant cells lowers the electrostatic repulsion between the phage and bacteria, thereby promoting phage adherence and subsequent infection. To further explore this, we tested the effect of phage treatment on K. pneumoniae growing in several different environments. We found that colistin-resistant cells were more susceptible to phage than were the wildtype cells when growing in biofilms or infected moth larvae and when colonizing the mammalian gut. A better understanding of these fitness costs may lead to new treatment approaches that minimize the emergence and spread of colistin-resistant pathogens in human and environmental reservoirs.

19.
Infect Immun ; 87(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30559220

RESUMEN

Citrate is a ubiquitous compound and can be utilized by many bacterial species, including enteric pathogens, as a carbon and energy source. Genes involved in citrate utilization have been extensively studied in some enteric bacteria, such as Klebsiella pneumoniae; however, their role in pathogenesis is still not clear. In this study, we investigated citrate utilization and regulation in Vibrio cholerae, the causative agent of cholera. The putative anaerobic citrate fermentation genes in V. cholerae, consisting of citCDEFXG, citS-oadGAB, and the two-component system (TCS) genes citAB, are highly homologous to those in K. pneumoniae Deletion analysis shows that these cit genes are essential for V. cholerae growth when citrate is the sole carbon source. The expression of citC and citS operons was dependent on citrate and CitAB, whose transcription was autorepressed and regulated by another TCS regulator, ArcA. In addition, citrate fermentation was under the control of catabolite repression. Mouse colonization experiments showed that V. cholerae can utilize citrate in vivo using the citrate fermentation pathway and that V. cholerae likely needs to compete with other members of the gut microbiota to access citrate in the gut.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácido Cítrico/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/metabolismo , Anaerobiosis , Animales , Animales Lactantes , Proteínas Bacterianas/genética , Carbono/metabolismo , Fermentación , Contenido Digestivo/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Ratones , Mutación , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
20.
PLoS Pathog ; 14(10): e1007413, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30376582

RESUMEN

Bacterial pathogens are highly adaptable organisms, a quality that enables them to overcome changing hostile environments. For example, Vibrio cholerae, the causative agent of cholera, is able to colonize host small intestines and combat host-produced reactive oxygen species (ROS) during infection. To dissect the molecular mechanisms utilized by V. cholerae to overcome ROS in vivo, we performed a whole-genome transposon sequencing analysis (Tn-seq) by comparing gene requirements for colonization using adult mice with and without the treatment of the antioxidant, N-acetyl cysteine. We found that mutants of the methyl-directed mismatch repair (MMR) system, such as MutS, displayed significant colonization advantages in untreated, ROS-rich mice, but not in NAC-treated mice. Further analyses suggest that the accumulation of both catalase-overproducing mutants and rugose colony variants in NAC- mice was the leading cause of mutS mutant enrichment caused by oxidative stress during infection. We also found that rugose variants could revert back to smooth colonies upon aerobic, in vitro culture. Additionally, the mutation rate of wildtype colonized in NAC- mice was significantly higher than that in NAC+ mice. Taken together, these findings support a paradigm in which V. cholerae employs a temporal adaptive strategy to battle ROS during infection, resulting in enriched phenotypes. Moreover, ΔmutS passage and complementation can be used to model hypermuation in diverse pathogens to identify novel stress resistance mechanisms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Cólera/microbiología , Interacciones Huésped-Patógeno , Intestinos/microbiología , Mutación , Estrés Oxidativo , Vibrio cholerae/genética , Adaptación Fisiológica , Animales , Catalasa/metabolismo , Cólera/genética , Cólera/patología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...