Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 807, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961177

RESUMEN

Glaucoma is the leading cause of irreversible blindness and is characterized by progressive retinal ganglion cell (RGC) loss and retinal nerve fiber layer thinning. Currently, no existing treatment is effective for the preservation of RGCs. MicroRNA-22-3p (miR22) and small extracellular vesicles derived from mesenchymal stem cells (MSC-sEVs) have neuroprotective effects. In this study, we apply miR22-overexpressing MSC-sEVs in an N-methyl-D-aspartic acid (NMDA)-induced RGC injury model to assess their short-term therapeutic effects and explore the underlying mechanisms. We find that mice in the miR22-sEVs-treated group have thicker retinas, fewer apoptotic cells, more reserved RGCs, better retinal function, and lower expression levels of Bax and caspase-3. MiR22-sEVs treatment promotes viability, inhibits apoptosis and inhibits Bax and caspase-3 expression in RGC-5 cells. MiR22 targets mitogen-activated protein kinase kinase kinase 12 to inhibit apoptosis by regulating the mitogen-activated protein kinase (MAPK) signaling pathway. Collectively, our results suggest that miR22-sEVs ameliorate NMDA-induced RGC injury through the inhibition of MAPK signaling pathway-mediated apoptosis, providing a potential therapy for glaucoma and other diseases that involve RGC damage.


Asunto(s)
Vesículas Extracelulares , Sistema de Señalización de MAP Quinasas , Células Madre Mesenquimatosas , MicroARNs , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Ratones , Apoptosis , Ratones Endogámicos C57BL , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/terapia , Masculino
2.
Int J Ophthalmol ; 17(4): 625-637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638260

RESUMEN

AIM: To explore the therapeutic effect and main molecular mechanisms of acteoside in a glaucoma model in DBA/2J mice. METHODS: Proteomics was used to compare the differentially expressed proteins of C57 and DBA/2J mice. After acteoside administration in DBA/2J mice, anterior segment observation, intraocular pressure (IOP) monitoring, electrophysiology examination, and hematoxylin and eosin staining were used to analyze any potential effects. Immunohistochemistry (IHC) assays were used to verify the proteomics results. Furthermore, retinal ganglion cell 5 (RGC5) cell proliferation was assessed with cell counting kit-8 (CCK-8) assays. Serta domain-containing protein 4 (Sertad4) mRNA and protein expression levels were measured by qRT-PCR and Western blot analysis, respectively. RESULTS: Proteomics analysis suggested that Sertad4 was the most significantly differentially expressed protein. Compared with the saline group, the acteoside treatment group showed decreased IOP, improved N1-P1 wave amplitudes, thicker retina, and larger numbers of cells in the ganglion cell layer (GCL). The IHC results showed that Sertad4 expression levels in DBA/2J mice treated with acteoside were significantly lower than in the saline group. Acteoside treatment could improve RGC5 cell survival and reduce the Sertad4 mRNA and protein expression levels after glutamate injury. CONCLUSION: Sertad4 is differentially expressed in DBA/2J mice. Acteoside can protect RGCs from damage, possibly through the downregulation of Sertad4, and has a potential use in glaucoma treatment.

3.
Front Pharmacol ; 14: 1229297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637426

RESUMEN

Copper (Cu) is a vital trace element for maintaining human health. Current evidence suggests that genes responsible for regulating copper influx and detoxification help preserve its homeostasis. Adequate Cu levels sustain normal cardiac and blood vessel activity by maintaining mitochondrial function. Cuproptosis, unlike other forms of cell death, is characterized by alterations in mitochondrial enzymes. Therapeutics targeting cuproptosis in cardiovascular diseases (CVDs) mainly include copper chelators, inhibitors of copper chaperone proteins, and copper ionophores. In this review, we expound on the primary mechanisms, critical proteins, and signaling pathways involved in cuproptosis, along with its impact on CVDs and the role it plays in different types of cells. Additionally, we explored the influence of key regulatory proteins and signaling pathways associated with cuproptosis on CVDs and determined whether intervening in copper metabolism and cuproptosis can enhance the outcomes of CVDs. The insights from this review provide a fresh perspective on the pathogenesis of CVDs and new targets for intervention in these diseases.

4.
Nat Commun ; 14(1): 2063, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045869

RESUMEN

Differential interference contrast (DIC) microscopy allows high-contrast, low-phototoxicity, and label-free imaging of transparent biological objects, and has been applied in the field of cellular morphology, cell segmentation, particle tracking, optical measurement and others. Commercial DIC microscopy based on Nomarski or Wollaston prism resorts to the interference of two polarized waves with a lateral differential offset (shear) and axial phase shift (bias). However, the shear generated by these prisms is limited to the rectilinear direction, unfortunately resulting in anisotropic contrast imaging. Here we propose an ultracompact metasurface-assisted isotropic DIC (i-DIC) microscopy based on a grand original pattern of radial shear interferometry, that converts the rectilinear shear into rotationally symmetric along radial direction, enabling single-shot isotropic imaging capabilities. The i-DIC presents a complementary fusion of typical meta-optics, traditional microscopes and integrated optical system, and showcases the promising and synergetic advancements in edge detection, particle motion tracking, and label-free cellular imaging.

5.
Biomater Adv ; 142: 213162, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36279749

RESUMEN

Glaucoma is the primary cause of irreversible blindness worldwide. The current treatments are primarily based on drug usage or surgical operation to reduce intraocular pressure (IOP). However, it is expensive and requires patients to insist on taking the medicine for a long time. The suprachoroidal space (SCS) is the space between the choroid and the sclera, which forms part of the uveovortex pathway in the circulation of aqueous humor. So far, it is still challenging to realize the injection of hydrogels into the SCS with long-term duration. In this work, an in situ-forming polyzwitterionic polycarboxybetaine hydrogel is designed and injected to expand SCS to increase the drainage of aqueous humor from the eye via the uveovortex pathway, thus reducing IOP for at least 6 weeks, while commercial hyaluronic acid hydrogel can only last for about 4 weeks. The clinical ophthalmological safety assessment examination shows that the treatment of polyzwitterion hydrogel is well-tolerated that leads to minimal inflammatory reaction, and histopathology assessment demonstrates that the SCS is expanded after injection of the hydrogel. Further analysis of ultrasound biomicroscopy reveals that there is a strong correlation between IOP reduction and SCS expansion. In short, the polyzwitterion hydrogel developed in this work can prolong the period of IOP reduction by expanding SCS, thus treating ocular hypertension and glaucoma without resorting to drugs or regular surgery.


Asunto(s)
Efusiones Coroideas , Implantes de Drenaje de Glaucoma , Glaucoma , Humanos , Hidrogeles , Glaucoma/tratamiento farmacológico , Presión Intraocular , Coroides/cirugía
6.
Bioact Mater ; 17: 234-247, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35386466

RESUMEN

Corneal regeneration has always been a challenge due to its sophisticated structure and undesirable keratocyte-fibroblast transformation. Herein, we propose 3D printing of a biomimetic epithelium/stroma bilayer implant for corneal regeneration. Gelatin methacrylate (GelMA) and long-chain poly(ethylene glycol) diacrylate (PEGDA) are blended to form a two-component ink, which can be printed to different mechanically robust programmed PEGDA-GelMA objects by Digital Light Processing (DLP) printing technology, due to the toughening effect of crystalline crosslinks from long-chain PEGDA on GelMA hydrogel after photo-initiated copolymerization. The printed PEGDA-GelMA hydrogels support cell adhesion, proliferation, migration, meanwhile demonstrating a high light transmittance, and an appropriate swelling degree, nutrient permeation and degradation rate. A bi-layer dome-shaped corneal scaffold consisting of rabbit corneal epithelial cells (rCECs)-laden epithelia layer and rabbit adipose-derived mesenchymal stem cells (rASCs)-laden orthogonally aligned fibrous stroma layer can be printed out with a high fidelity and robustly surgical handling ability. This bi-layer cells-laden corneal scaffold is applied in a rabbit keratoplasty model. The post-operative outcome reveals efficient sealing of corneal defects, re-epithelialization and stromal regeneration. The concerted effects of microstructure of 3D printed corneal scaffold and precisely located cells in epithelia and stroma layer provide an optimal topographical and biological microenvironment for corneal regeneration.

7.
BMC Ophthalmol ; 21(1): 360, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635090

RESUMEN

BACKGROUND: To explore the molecular genetic cause of a four-generation autosomal dominant retinitis pigmentosa family in China. METHODS: Targeted region sequencing was performed to detect the potential mutation, and Sanger sequencing was used to validate the mutation. Multiple sequence alignment from different species was performed by CLUSTALW. The structures of wild-type and the mutant RHO were modeled by Swiss-Model Server and shown using a PyMOL Molecular Graphic system. RESULTS: A novel heterozygous nonsense mutation (c.1015 A > T, p.Lys339Ter, p.K339X) within RHO, which cosegregated with retinitis pigmentosa phenotype was detected in this family. Bioinformatics analysis showed the mutation was located in a highly conserved region, and the mutation was predicted to be pathogenic. CONCLUSIONS: We identified a novel heterozygous nonsense mutation of RHO gene in a Chinese family with retinitis pigmentosa by target region sequencing and our bioinformatics analysis indicated that the mutation is pathogenic. Our results can broaden the spectrum of RHO gene mutation and enrich the phenotype-genotype correlation of retinitis pigmentosa.


Asunto(s)
Codón sin Sentido , Retinitis Pigmentosa , China/epidemiología , Heterocigoto , Humanos , Linaje , Retinitis Pigmentosa/genética
8.
Bioact Mater ; 6(10): 3085-3096, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33778190

RESUMEN

Development of a biostable and biosafe vitreous substitute is highly desirable, but remains a grand challenge. Herein, we propose a novel strategy for constructing a readily administered vitreous substitute based on a thiol-acrylate clickable polyzwitterion macromonomer. A biocompatible multivinyl polycarboxybetaine (PCB-OAA) macromonomer is designed and synthesized, and mixed with dithiothreitol (DTT) via a Michael addition reaction to form a hydrogel in vitreous cavity. This resultant PCB-OAA hydrogel exhibits controllable gelation time, super anti-fouling ability against proteins and cells, excellent biocompatibility, and approximate key parameters to human vitreous body including equilibrium water content, density, optical properties, modulus. Remarkably, outperforming clinically used silicone oil in biocompatibility, this rapidly formed hydrogel in the vitreous cavity of rabbit eyes remains stable in vitreous cavity, showing an appealing ability to prevent significantly inflammatory response, fibrosis and complications such as raised intraocular pressure (IOP), and cataract formation. This zwitterionic polymer hydrogel holds great potential as a vitreous substitute.

9.
Cell Discov ; 5: 33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263570

RESUMEN

Primary cilia are critically involved in the coordination of diverse signaling pathways and ciliary defects are associated with a variety of human diseases. The past decades have witnessed great progress in the core machinery orchestrating ciliary assembly. However, the upstream epigenetic cues that direct ciliogenesis remain elusive. Herein, we demonstrate that mixed-lineage leukemia protein 2 (MLL2), a histone methyltransferase, plays a negative role in ciliogenesis. RNA-sequencing analysis reveals that the expression of five actin-associated proteins is significantly downregulated in MLL2-depleted cells. Overexpression of these proteins partially rescues ciliary abnormality elicited by MLL2 depletion. Our data also show that actin dynamics is remarkably changed in MLL2-depleted cells, resulting in the impairment of cell adhesion, spreading, and motility. In addition, MLL2 depletion promotes ciliary vesicle trafficking to the basal body in an actin-related manner. Together, these results reveal that MLL2 inhibits ciliogenesis by modulating actin dynamics and vesicle transport, and suggest that alteration of MLL2 may contribute to the pathogenesis of cilium-associated diseases.

10.
J Cell Physiol ; 234(6): 9723-9732, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30362575

RESUMEN

Successful treatment of pancreatic cancer, which has the highest mortality rate among all types of malignancies, has challenged oncologists for decades, and early detection would undoubtedly increase favorable patient outcomes. The identification of proteins involved in pancreatic cancer progression could lead to biomarkers for early detection of this disease. This study identifies one potential candidate, cylindromatosis (CYLD), a deubiquitinase and microtubule-binding protein that plays a suppressive role in pancreatic cancer development. In pancreatic cancer samples, downregulation of CYLD expression resulted from a loss in the copy number of the CYLD gene; additionally, reduced expression of CYLD negatively correlated with the clinicopathological parameters. Further study demonstrated that CYLD deficiency promoted colony formation in vitro and pancreatic cancer growth in vivo. Mechanistic studies revealed that CYLD is essential for spindle orientation and properly oriented cell division; CYLD deficiency resulted in a substantial increase in chromosome missegregation. Taken together, these data indicate a critical role for CYLD in suppressing pancreatic tumorigenesis, implicating its potential as a biomarker for early detection of pancreatic cancer and a prognostic indicator of patient outcomes.


Asunto(s)
Carcinogénesis/patología , Enzima Desubiquitinante CYLD/deficiencia , Mitosis , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/patología , Animales , Línea Celular Tumoral , Proliferación Celular , Segregación Cromosómica , Enzima Desubiquitinante CYLD/metabolismo , Dosificación de Gen , Humanos , Ratones , Neoplasias Pancreáticas/genética , Huso Acromático/metabolismo , Ensayo de Tumor de Célula Madre
11.
Cell Biol Int ; 38(11): 1330-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25044827

RESUMEN

T-helper (Th) 2 polarization functions in a number of immune diseases, but their pathogenesis needs further investigation. Some microbial products or components are strong adjuvants in the creation of mouse models of Th2 polarization. T cell immunoglobulin mucin molecule (TIM) 4 is a facilitator in the initiation of Th2 response. This study looks at the role of one of the microbial products, flagellin (FGN), in the induction of TIM4 expression in mast cells. Bone marrow derived mast cells (BMMC) were generated. Induction of TIM4 in mast cells was assessed in both experiments in vitro and in vivo. The signal transducer and activator of transcription 6 (Stat6) phosphorylation in BMMC were assessed by Western blotting. A coculture model with FGN-primed BMMC and naïve CD4(+) T cells was employed to assess FGN in facilitating the expression of TIM4 in mast cells. After exposure to FGN, TIM4 levels were significantly increased in BMMC and mast cells of the mouse intestine, which was accompanied by increased STAT6 phosphorylation. Culture with FGN-primed BMMC, naïve CD4(+) T cells developed into Th2 cells by a TIM4-dependent manner. We conclude that FGN can induce mast cells to express TIM4, which helps initiate Th2 polarization.


Asunto(s)
Flagelina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Mastocitos/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Animales , Células de la Médula Ósea/citología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Masculino , Mastocitos/citología , Mastocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Factor de Transcripción STAT6/metabolismo , Células Th2/citología
12.
PLoS One ; 7(12): e51830, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23272174

RESUMEN

BACKGROUND AND AIMS: The pathogenesis of inflammatory bowel disease (IBD) has not been fully understood yet. Eosinophils (Eo) are one type of the major proinflammatory cells of the chronic inflammation in the intestine. CD98 is involved in the pathogenesis of a number of inflammations. This study aims to elucidate the role of CD98(+) Eos in the initiation of intestinal inflammation. METHODS: The colon biopsies were collected from 60 patients with IBD. The expression of CD98 in the biopsies was examined by immunohistochemistry. The serum levels of the flagellin (FGN) antibody and Eo-derived mediators in the culture supernatants were assessed by enzyme-linked immunosorbent assay. The role of FGN on Eo activation was examined in a cell culture model. The role of FGN in the induction of colitis was observed in a mouse model. RESULTS: Compared to normal controls, the frequency of CD98(+) Eos was markedly increased in the IBD colon mucosa. FGN were detected in the colon biopsies and in the sera of IBD patients. Exposure to FGN induced the expression of galectin 3 (the ligand of CD98) in dendritic cells. The exposure to galectin 3 activated the CD98(+) Eos. After treatment with FGN intrarectally, mice with eosinophilia showed severe inflammation in the colon. CONCLUSIONS: The interaction of galectin 3 and CD98 can induce Eos to release chemical mediators that contributes to the initiation of the intestinal inflammation.


Asunto(s)
Eosinófilos/inmunología , Eosinófilos/metabolismo , Proteína-1 Reguladora de Fusión/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Adolescente , Adulto , Anciano , Animales , Línea Celular , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Femenino , Flagelina/efectos adversos , Flagelina/metabolismo , Galectina 3/metabolismo , Humanos , Inflamación/patología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...