Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Materials (Basel) ; 17(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893735

RESUMEN

Colloidal quantum dots (CQDs) have unique advantages in the wide tunability of visible-to-infrared emission wavelength and low-cost solution processibility [...].

2.
Biomimetics (Basel) ; 9(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38921254

RESUMEN

The compound eye is a natural multi-aperture optical imaging system. In this paper, a continuous optical zoom compound eye imaging system based on Alvarez lenses is proposed. The main optical imaging part of the proposed system consists of a curved Alvarez lens array (CALA) and two Alvarez lenses. The movement of the CALA and two Alvarez lenses perpendicular to the optical axis is realized by the actuation of the dielectric elastomers (DEs). By adjusting the focal length of the CALA and the two Alvarez lenses, the proposed system can realize continuous zoom imaging without any mechanical movement vertically to the optical axis. The experimental results show that the paraxial magnification of the target can range from ∼0.30× to ∼0.9×. The overall dimensions of the optical imaging part are 54 mm × 36 mm ×60 mm (L × W × H). The response time is 180 ms. The imaging resolution can reach up to 50 lp/mm during the optical zoom process. The proposed continuous optical zoom compound eye imaging system has potential applications in various fields, including large field of view imaging, medical diagnostics, machine vision, and distance detection.

3.
Opt Express ; 32(11): 20066-20079, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859124

RESUMEN

In the field of machine vision, depth segmentation plays a crucial role in dividing targets into different regions based on abrupt changes in depth. Phase-shifting depth segmentation is a technique that extracts singular points to form segmentation lines by leveraging the phase-shifting invariance of singular points in different wrapped phase maps. This makes it immune to color, texture, and camera exposure. However, current phase-shifting depth segmentation techniques face challenges in the precision of segmentation. To overcome this issue, this paper proposes a singular points extraction technique by constructing a more comprehensive threshold with the help of the minimum period of the phase map. Taking full advantage of the proposed technique, mean-value points and order singular points are accurately filtered out, and the integrity of segmentation lines in high-curvature regions can be guaranteed. During optimization processing, the precision of segmentation is improved by employing a low-cost morphology-based optimization model. Simulation results demonstrate the segmentation accuracy reaches up to 98.58% even in a noisy condition. Experimental results on different objects indicate that the proposed method exhibits good generalization and robustness.

4.
Light Sci Appl ; 13(1): 89, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609412

RESUMEN

Colloidal quantum dots (CQDs) are of interest for optoelectronic devices because of the possibility of high-throughput solution processing and the wide energy gap tunability from ultraviolet to infrared wavelengths. People may question about the upper limit on the CQD wavelength region. To date, although the CQD absorption already reaches terahertz, the practical photodetection wavelength is limited within mid-wave infrared. To figure out challenges on CQD photoresponse in longer wavelength, would reveal the ultimate property on these nanomaterials. What's more, it motivates interest in bottom-up infrared photodetection with less than 10% cost compared with epitaxial growth semiconductor bulk. In this work, developing a re-growth method and ionic doping modification, we demonstrate photodetection up to 18 µm wavelength on HgTe CQD. At liquid nitrogen temperature, the responsivity reaches 0.3 A/W and 0.13 A/W, with specific detectivity 6.6 × 108 Jones and 2.3 × 109 Jones for 18 µm and 10 µm CQD photoconductors, respectively. This work is a step toward answering the general question on the CQD photodetection wavelength limitation.

5.
Opt Express ; 32(4): 6684-6699, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439366

RESUMEN

Topographic measurements of micro- or nanostructures are essential in cutting-edge scientific disciplines such as optical communications, metrology, and structural biology. Despite the advances in surface metrology, measuring micron-scale steps with wide field of view (FOV) and high-resolution remains difficult. This study demonstrates a dual-wavelength Fourier ptychographic microscopy for high-resolution topographic measurement across a wide FOV using an aperture scanning structure. This structure enables the capture of a three-dimensional (3D) sample's scattered field with two different wavelength lasers, thus allowing the axial measurement range growing from nano- to micro-scale with enhanced lateral resolution. To suppress the unavoidable noises and artifacts caused by temporal coherence, system vibration, etc., a total variation (TV) regularization algorithm is introduced for phase retrieval. A blazed grating with micron-scale steps is used as the sample to validate the performance of our method. The agreement between the high-resolution reconstructed topography with our method and that with atomic force microscopy verified the effectiveness. Meanwhile, numerical simulations suggest that the method has the potential to characterize samples with high aspect-ratio steps.

6.
Opt Express ; 32(5): 7119-7135, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439401

RESUMEN

Ghost imaging (GI) has been widely used in the applications including spectral imaging, 3D imaging, and other fields due to its advantages of broad spectrum and anti-interference. Nevertheless, the restricted sampling efficiency of ghost imaging has impeded its extensive application. In this work, we propose a novel foveated pattern affine transformer method based on deep learning for efficient GI. This method enables adaptive selection of the region of interest (ROI) by combining the proposed retina affine transformer (RAT) network with minimal computational and parametric quantities with the foveated speckle pattern. For single-target and multi-target scenarios, we propose RAT and RNN-RAT (recurrent neural network), respectively. The RAT network enables an adaptive alteration of the fovea of the variable foveated patterns spot to different sizes and positions of the target by predicting the affine matrix with a minor number of parameters for efficient GI. In addition, we integrate a recurrent neural network into the proposed RAT to form an RNN-RAT model, which is capable of performing multi-target ROI detection. Simulations and experimental results show that the method can achieve ROI localization and pattern generation in 0.358 ms, which is a 1 × 105 efficiency improvement compared with the previous methods and improving the image quality of ROI by more than 4 dB. This approach not only improves its overall applicability but also enhances the reconstruction quality of ROI. This creates additional opportunities for real-time GI.

7.
Opt Express ; 32(2): 1246-1256, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297680

RESUMEN

Optical zoom is an essential function for many imaging systems including consumer electronics, biomedical microscopes, telescopes, and projectors. However, most optical zoom imaging systems have discrete zoom rates or narrow zoom ranges. In this work, a continuous optical zoom imaging system with a wide zoom range is proposed. It consists of a solid lens, two Alvarez lenses, and a camera with an objective. Each Alvarez lens is composed of two cubic phase plates, which have inverted freeform surfaces concerning each other. The movement of the cubic phase masks perpendicular to the optical axis is realized by the actuation of the dielectric elastomer. By applying actuation voltages to the dielectric elastomer, cubic phase masks are moved laterally and then the focal lengths of the two Alvarez lenses are changed. By adjusting the focal lengths of these two Alvarez lenses, the optical magnification is tuned. The proposed continuous optical zoom imaging system is built and the validity is verified by the experiments. The experimental results demonstrate that the zoom ratio is up to 10×, i.e., the magnification continuously changes from 1.58× to 15.80× when the lateral displacements of the cubic phase masks are about 1.0 mm. The rise and fall response times are 150 ms and 210 ms, respectively. The imaging resolution can reach 114 lp/mm during the optical zoom process. The proposed continuous optical imaging system is expected to be used in the fields of microscopy, biomedicine, virtual reality, etc.

8.
Opt Express ; 32(2): 2418-2431, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38297772

RESUMEN

Instantaneous phase shifting interferometry technology, the core component of which is the pixel micropolarizer camera, has been widely used in commercial interferometers. This technology has the superiority of single-frame acquisition, vibration insensitivity, and no need for phase shifting devices. However, due to manufacturing defects and accuracy limitations, the extinction ratios (ER) of the micropolarizer array are different and fairly small, directly affecting the phase calculation accuracy. This paper initially derives a theoretical expression for the phase calculation error introduced by the extinction ratio (ER) and proposes the error correction model to reduce phase calculation errors caused by the extinction ratio. The theoretical analysis can serve as an important basis for accurately assessing the polarization characteristics of a pixel micropolarizer camera. Quantifying the impact of the extinction ratios provides significant support for the selection of polarization equipment. In addition, the paper proposes a calibration model to improve measurement accuracy, which can serve as an effective means to reduce the impact of the extinction ratio (ER). The innovative research content revealed the influence of extinction ratio (ER), serving as a valuable complement to the existing analysis and research on extinction ratio (ER).

9.
Biomed Opt Express ; 15(2): 672-686, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38404332

RESUMEN

Fourier ptychographic microscopy (FPM) has emerged as a new wide-field and high-resolution computational imaging technique in recent years. To ensure data redundancy for a stable convergence solution, conventional FPM requires dozens or hundreds of raw images, increasing the time cost for both data collection and computation. Here, we propose a single-shot Fourier ptychographic microscopy with isotropic lateral resolution via polarization-multiplexed LED illumination, termed SIFPM. Three LED elements covered with 0°/45°/135° polarization films, respectively, are used to provide numerical aperture-matched illumination for the sample simultaneously. Meanwhile, a polarization camera is utilized to record the light field distribution transmitted through the sample. Based on weak object transfer functions, we first obtain the amplitude and phase estimations of the sample by deconvolution, and then we use them as the initial guesses of the FPM algorithm to refine the accuracy of reconstruction. We validate the complex sample imaging performance of the proposed method on quantitative phase target, unstained and stained bio-samples. These results show that SIFPM can realize quantitative imaging for general samples with the resolution of the incoherent diffraction limit, permitting high-speed quantitative characterization for cells and tissues.

10.
Opt Express ; 32(1): 62-78, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175063

RESUMEN

The Ritchey-Common test is widely adopted to measure large optical flats. The traditional Ritchey-Common test eliminates the defocus error with multiple tests by changing the position of the mirrors, which suffers from cumbersome steps, poor repeatability, coupled system error, extra mirror deformation, and potential overturning. The above problems increase the test time, decrease the reliability and accuracy, increase the test cost, and threaten manufacturing safety. We propose a single-test Ritchey-Common interferometry to avoid the obligatory position change in the traditional method. A sub-aperture of test flat is directly measured by a small-aperture interferometer before the test, which is easy to implement, to replace the extra system wavefront measurement in different positions. The defocus is calculated in sub-aperture at exactly the same position as the full-field measurement without the position change, then the surface form under test can be obtained with accurate optical path modeling. Measurement experiments for 100 mm and 2050 mm aperture flats were performed to demonstrate the feasibility of this method. Compared with a direct test in a standard Zygo interferometer, the peak to valley (PV) and root mean square (RMS) errors were 0.0889 λ and 0.0126 λ (λ=632.8 nm), respectively, which reaches the upper limit of accuracy of the interferometer. To the best of our knowledge, this is the first proposal of the Ritchey-Common test that can eliminate the defocus error and realize high accuracy measurement in a single test. Our work paves the way for reliable and practical optical metrology for large optical flats.

11.
Appl Opt ; 63(3): 585-594, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294368

RESUMEN

For the high-precision fabrication of a continuous phase plate (CPP), a combined decoupling algorithm of single-step decoupling based on the Clairaut-Schwarz theorem and global decoupling by stagewise iteration is proposed. It attempts to address the problem of the low accuracy and limitation of the existing slope-based figuring (SF) model in two-dimensional applications caused by the vector removal coupling between the tool slope influence function and the material removal slope due to the inherent convolution effect in the SF model. The shortcomings of CPP interferometry and the application bottleneck of the Hartmann test in traditional height-based figuring model are studied. The generation mechanism of vector removal coupling is analyzed and compensated. A CPP of 85m m×85m m was successfully machined by the decoupled slope-based figuring model, and the root mean square (RMS) of the surface height error accounted for 6.01% of the RMS of the design value. The research results can effectively improve the convergence and certainty of CPP fabrication using the slope-based figuring model.

12.
Biomimetics (Basel) ; 9(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38248623

RESUMEN

This paper presents a monocular biological microscope with colorful 3D reconstruction and an extended depth of field using an electrically tunable lens. It is based on a 4f optical system with an electrically tunable lens at the confocal plane. Rapid and extensive depth scanning while maintaining consistent magnification without mechanical movement is achieved. We propose an improved Laplacian operator that considers pixels in diagonal directions to provide enhanced fusion effects and obtain more details of the object. Accurate 3D reconstruction is achieved using the shape-from-focus method by tuning the focal power of the electrically tunable lens. We validate the proposed method by performing experiments on biological samples. The 3D reconstructed images obtained from the biological samples match the actual shrimp larvae and bee antenna samples. Two standard gauge blocks are used to evaluate the 3D reconstruction performance of the proposed method. The experimental results show that the extended depth of fields are 120 µm, 240 µm, and 1440 µm for shrimp larvae, bee tentacle samples, and gauge blocks, respectively. The maximum absolute errors are -39.9 µm and -30.6 µm for the first and second gauge blocks, which indicates 3D reconstruction deviations are 0.78% and 1.52%, respectively. Since the procedure does not require any custom hardware, it can be used to transform a biological microscope into one that effectively extends the depth of field and achieves highly accurate 3D reconstruction results, as long as the requirements are met. Such a microscope presents a broad range of applications, such as biological detection and microbiological diagnosis, where colorful 3D reconstruction and an extended depth of field are critical.

13.
J Hazard Mater ; 465: 133081, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38016321

RESUMEN

A large number of natural and anthropogenic wastes were landfilled, and dissolved organic matter (DOM) were formed during landfill. However, the composition, transformation, and coexistence characteristics of natural and anthropogenic DOM in leachate remain unclear. Fourier transform ion cyclotron resonance mass spectrometry, size exclusion chromatography, gas chromatography coupled with mass spectrometry, and three-dimensional excitation-emission matrix spectrum were employed to clarify comprehensively the abovementioned question. The results showed that natural DOM in young leachate constituted mainly straight-chain organic acids, protein substances, and building blocks of humic substances (BB). Straight-chain organic acids vanished in old leachates, and the concentration of protein substances and BB decreased from 44% to 26% and from 47% to 12%, respectively, while CHON and CHONS were degraded to CHO and CHOS during the process. As to anthropogenic DOM, its types and relative content in leachate increased during landfill, and aromatic acids, terpenes, halogenated organics, indoles, and phenols became the main organic components in old leachate. Compared to natural DOM, anthropogenic DOM was degraded slowly and accumulated in leachate, and some of the natural DOM facilitated the dechlorination of dichlorinated organic compounds. This study demonstrates that landfill led to an increase in humic substances and halogenated organic compounds in old leachate, which was intensified with concentrated leachate recirculation.

14.
Opt Express ; 31(25): 41479-41495, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087546

RESUMEN

The wireless transmission of video data mainly entails addressing the massive video stream data and ensuring the quality of image frame transmission. To reduce the amount of data and ensure an optimal data transmission rate and quality, we propose a free-space optical video transmission system that applies compressed sensing (CS) algorithms to wireless optical communication systems. Based on the Artix-7 series field programmable gate array (FPGA) chip, we completed the hardware design of the optical wireless video transceiver board; the CS image is transmitted online to the FPGA through Gigabit Ethernet, and the video data is encoded by gigabit transceiver with low power (GTP) and converted into an optical signal, which is relayed to the atmospheric turbulence simulation channel through an attenuator and a collimating mirror. After the optical signal is decoded by photoelectric conversion at the receiving end, the Camera-Link frame grabber is d; thus, the image is collected, and it is reconstructed offline. Herein, the link transmission conditions of different algorithm sampling rates, optical power at the receiving end, and atmospheric coherence length are measured. The experimental results indicate that the encrypt-then-compress (ETC) type algorithm exhibits a more optimal image compression transmission reconstruction performance, and that the 2D compressed sensing (2DCS) algorithm exhibits superior performance. Under the condition that the optical power satisfies the link connectivity, the PSNR value of the reconstructed image is 3-7 dB higher than that of the comparison algorithm. In a strong atmosphere turbulence environment, the peak signal-to-noise ratio (PSNR) of the corresponding reconstructed image under different transmission rates at the receiving end can still exceed 30 dB, ensuring the complete reconstruction of the image.

15.
Materials (Basel) ; 16(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068065

RESUMEN

In recent years, mercury chalcogenide colloidal quantum dots (CQDs) have attracted widespread research interest due to their unique electronic structure and optical properties. Mercury chalcogenide CQDs demonstrate an exceptionally broad spectrum and tunable light response across the short-wave to long-wave infrared spectrum. Photodetectors based on mercury chalcogenide CQDs have attracted considerable attention due to their advantages, including solution processability, low manufacturing costs, and excellent compatibility with silicon substrates, which offers significant potential for applications in infrared detection and imaging. However, practical applications of mercury-chalcogenide-CQD-based photodetectors encounter several challenges, including material stability, morphology control, surface modification, and passivation issues. These challenges act as bottlenecks in further advancing the technology. This review article delves into three types of materials, providing detailed insights into the synthesis methods, control of physical properties, and device engineering aspects of mercury-chalcogenide-CQD-based infrared photodetectors. This systematic review aids researchers in gaining a better understanding of the current state of research and provides clear directions for future investigations.

16.
Opt Express ; 31(22): 36992-37010, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017837

RESUMEN

A continuous time-domain adaptive power model of transmitter optical and control algorithm based on atmospheric turbulence channel reciprocity are explored for mitigating the free-space optical communication (FSOC) receiver optical intensity scintillation and bit error rate (BER) deterioration. First, a transmitter optical adaptive power control (OAPC) system architecture using four wavelength optical signals based on atmospheric turbulence channel reciprocity is proposed, and electronically variable optical attenuator (EVOA) and erbium-doped fiber amplifier (EDFA) are employed as the main OAPC units for power adaptation. Moreover, a reciprocity evaluation model for gamma-gamma (G-G) continuous-time signals is generated using the autoregressive moving average (ARMA) stochastic process, which takes into account the delay time and system noise, and a reciprocity-based OPAC algorithm is proposed. Numerical simulations were also performed to analyze the signal reciprocity characteristics under different turbulence, noise, and sampling time mismatch at both ends, as well as the scintillation index (SI) performance under OAPC system operation. Simultaneously, the time-domain signals of continuous quadrature amplitude modulation -16 (QAM-16) and QAM-32 real states are fused with the gamma-gamma (G-G) reciprocal turbulence continuous signals to analyze the probability density function (PDF) and bit error ratio (BER) performance after OAPC correction. Finally, a 64 Gpbs QAM-16 OPAC communication experiment was successfully executed based on an atmospheric turbulence simulator. It is shown that the OAPC correction is carried out using reciprocity at millisecond sampling delay, the light intensity scintillation of the communication signal can be well suppressed, the signal-to-noise ratio (SNR) is greatly improved, the suppression is more obvious under strong turbulence, the overall BER reduction is greater than 2.8 orders of magnitude with the OAPC system, and this trend becomes more pronounced as the received power increases, even reach 6 orders of magnitude in some places. This work provides real time-domain continuous signal samples for real signal generation of communication signals in real turbulence environments, adaptive coding modulation using reciprocity, channel estimation, and optical wavefront adaptive suppression, which are the basis of advanced adaptive signal processing algorithms.

17.
Materials (Basel) ; 16(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959558

RESUMEN

The p-type Sb2Te3 alloy, a binary compound belonging to the V2VI3-based materials, has been widely used as a commercial material in the room-temperature zone. However, its low thermoelectric performance hinders its application in the low-medium temperature range. In this study, we prepared Sb2Te3 nanosheets coated with nanometer-sized Pt particles using a combination of solvothermal and photo-reduction methods. Our findings demonstrate that despite the adverse effects on certain properties, the addition of Pt particles to Sb2Te3 significantly improves the thermoelectric properties, primarily due to the enhanced electronic conductivity. The optimal ZT value reached 1.67 at 573 K for Sb2Te3 coated with 0.2 wt% Pt particles, and it remained above 1.0 within the temperature range of 333-573 K. These values represent a 47% and 49% increase, respectively, compared to the pure Sb2Te3 matrix. This enhancement in thermoelectric performance can be attributed to the presence of Pt metal particles, which effectively enhance carrier and phonon transport properties. Additionally, we conducted a Density Functional Theory (DFT) study to gain further insights into the underlying mechanisms. The results revealed that Sb2Te3 doped with Pt exhibited a doping level in the band structure, and a sharp rise in the Density of States (DOS) was observed. This sharp rise can be attributed to the presence of Pt atoms, which lead to enhanced electronic conductivity. In conclusion, our findings demonstrate that the incorporation of nanometer-sized Pt particles effectively improves the carrier and phonon transport properties of the Sb2Te3 alloy. This makes it a promising candidate for medium-temperature thermoelectric applications, as evidenced by the significant enhancement in thermoelectric performance achieved in this study.

18.
Opt Lett ; 48(21): 5679-5682, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910732

RESUMEN

Optical coherence tomography (OCT) images are commonly affected by sidelobe artifacts due to spectral non-uniformity and spectral leakage. Conventional frequency domain spectral shaping methods widen the mainlobe and compromise axial resolution. While image-domain deconvolution techniques can address the trade-off between axial resolution and artifact suppression, their reconstruction quality relies on accurate measurement or estimation of system point spread function (PSF). Inaccurate PSF estimation leads to loss of details in the reconstructed images. In this Letter, we introduce multi-shaping sparse-continuous reconstruction (MSSCR) for an OCT image, a novel, to the best of our knowledge, framework that combines spectral multi-shaping and iterative image reconstruction with sparse-continuous priors. The MSSCR achieves sidelobe suppression without requiring any PSF measurement or estimation and effectively preserving the axial resolution. The experimental results demonstrate that the MSSCR achieves sidelobe suppression of more than 8 dB. We believe that the MSSCR holds potential for addressing sidelobe artifacts in OCT.

19.
Biomed Opt Express ; 14(11): 5886-5903, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38021108

RESUMEN

The non-interference three-dimensional refractive index (RI) tomography has attracted extensive attention in the life science field for its simple system implementation and robust imaging performance. However, the complexity inherent in the physical propagation process poses significant challenges when the sample under study deviates from the weak scattering approximation. Such conditions complicate the task of achieving global optimization with conventional algorithms, rendering the reconstruction process both time-consuming and potentially ineffective. To address such limitations, this paper proposes an untrained multi-slice neural network (MSNN) with an optical structure, in which each layer has a clear corresponding physical meaning according to the beam propagation model. The network does not require pre-training and performs good generalization and can be recovered through the optimization of a set of intensity images. Concurrently, MSNN can calibrate the intensity of different illumination by learnable parameters, and the multiple backscattering effects have also been taken into consideration by integrating a "scattering attenuation layer" between adjacent "RI" layers in the MSNN. Both simulations and experiments have been conducted carefully to demonstrate the effectiveness and feasibility of the proposed method. Experimental results reveal that MSNN can enhance clarity with increased efficiency in RI tomography. The implementation of MSNN introduces a novel paradigm for RI tomography.

20.
Biomed Opt Express ; 14(11): 5709, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38021112

RESUMEN

[This corrects the article on p. 2739 in vol. 13, PMID: 35774326.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...