Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genome Res ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749656

RESUMEN

Underrepresented populations are often excluded from genomic studies due in part to a lack of resources supporting their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their open data sharing policies. Here, we harmonized a high quality set of 4,094 whole genomes from 80 populations in the HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and subcontinental levels. We also demonstrate substantial added value from this dataset compared to the prior versions of the component resources, typically combined via liftOver and variant intersection; for example, we catalog millions of new genetic variants, mostly rare, compared to previous releases. In addition to unrestricted individual-level public release, we provide detailed tutorials for conducting many of the most common quality control steps and analyses with these data in a scalable cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse ancestry populations.

2.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36747613

RESUMEN

Underrepresented populations are often excluded from genomic studies due in part to a lack of resources supporting their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their open data sharing policies. Here, we harmonized a high quality set of 4,094 whole genomes from HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and subcontinental levels. We also demonstrate substantial added value from this dataset compared to the prior versions of the component resources, typically combined via liftover and variant intersection; for example, we catalog millions of new genetic variants, mostly rare, compared to previous releases. In addition to unrestricted individual-level public release, we provide detailed tutorials for conducting many of the most common quality control steps and analyses with these data in a scalable cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse ancestry populations.

4.
Am J Hum Genet ; 110(9): 1454-1469, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37595579

RESUMEN

Short-read genome sequencing (GS) holds the promise of becoming the primary diagnostic approach for the assessment of autism spectrum disorder (ASD) and fetal structural anomalies (FSAs). However, few studies have comprehensively evaluated its performance against current standard-of-care diagnostic tests: karyotype, chromosomal microarray (CMA), and exome sequencing (ES). To assess the clinical utility of GS, we compared its diagnostic yield against these three tests in 1,612 quartet families including an individual with ASD and in 295 prenatal families. Our GS analytic framework identified a diagnostic variant in 7.8% of ASD probands, almost 2-fold more than CMA (4.3%) and 3-fold more than ES (2.7%). However, when we systematically captured copy-number variants (CNVs) from the exome data, the diagnostic yield of ES (7.4%) was brought much closer to, but did not surpass, GS. Similarly, we estimated that GS could achieve an overall diagnostic yield of 46.1% in unselected FSAs, representing a 17.2% increased yield over karyotype, 14.1% over CMA, and 4.1% over ES with CNV calling or 36.1% increase without CNV discovery. Overall, GS provided an added diagnostic yield of 0.4% and 0.8% beyond the combination of all three standard-of-care tests in ASD and FSAs, respectively. This corresponded to nine GS unique diagnostic variants, including sequence variants in exons not captured by ES, structural variants (SVs) inaccessible to existing standard-of-care tests, and SVs where the resolution of GS changed variant classification. Overall, this large-scale evaluation demonstrated that GS significantly outperforms each individual standard-of-care test while also outperforming the combination of all three tests, thus warranting consideration as the first-tier diagnostic approach for the assessment of ASD and FSAs.


Asunto(s)
Trastorno del Espectro Autista , Femenino , Embarazo , Humanos , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Primer Trimestre del Embarazo , Ultrasonografía Prenatal , Mapeo Cromosómico , Exoma
5.
Nat Genet ; 54(9): 1320-1331, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35982160

RESUMEN

Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. We explored the genes disrupted by these variants from joint analysis of protein-truncating variants (PTVs), missense variants and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 genes associated with ASD at false discovery rate (FDR) ≤ 0.001 (185 at FDR ≤ 0.05). De novo PTVs, damaging missense variants and CNVs represented 57.5%, 21.1% and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD) (n = 91,605) yielded 373 genes associated with ASD/DD at FDR ≤ 0.001 (664 at FDR ≤ 0.05), some of which differed in relative frequency of mutation between ASD and DD cohorts. The DD-associated genes were enriched in transcriptomes of progenitor and immature neuronal cells, whereas genes showing stronger evidence in ASD were more enriched in maturing neurons and overlapped with schizophrenia-associated genes, emphasizing that these neuropsychiatric disorders may share common pathways to risk.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , Humanos , Mutación
6.
Foot Ankle Surg ; 27(2): 224-230, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32439241

RESUMEN

BACKGROUND: Infected diabetic foot ulcer (DFU) patients present with an impaired baseline physical function (PF) that can be further compromised by surgical intervention to treat the infection. The impact of surgical interventions on Patient Reported Outcomes Measurement Information System (PROMIS) PF within the DFU population has not been investigated. We hypothesize that preoperative PROMIS scores (PF, Pain Interference (PI), Depression) in combination with relevant clinical factors can be utilized to predict postoperative PF in DFU patients. METHODS: DFU patients from a single academic physician's practice between February 2015 and November 2018 were identified (n = 240). Ninety-two patients met inclusion criteria with complete follow-up and PROMIS computer adaptive testing records. Demographic and clinical factors, procedure performed, and wound healing status were collected. Spearman's rank correlation coefficient, Chi-Squared tests and multidimensional modelling were applied to all variables' pre- and postoperative values to assess patients' postoperative PF. RESULTS: The mean age was 60.5 (33-96) years and mean follow-up was 4.7 (3-12) months. Over 70 % of the patients' initial PF were 2-3 standard deviations below the US population (n = 49; 28). Preoperative PF (p < 0.01), PI (p < 0.01), Depression (p < 0.01), CRF (p < 0.02) and amputation level (p < 0.04) showed significant univariate correlation with postoperative PF. Multivariate model (r = 0.55) showed that the initial PF (p = 0.004), amputation level (p = 0.008), and wound healing status (p = 0.001) predicted postoperative PF. CONCLUSIONS: Majority of DFU patients present with poor baseline PF. Preoperative PROMIS scores (PF, PI, Depression) are predictive of postoperative PROMIS PF in DFU patients. Postoperative patient's physical function can be assessed by PFpostoperative = 29.42 + 0.34 (PFinitial) - 5.87 (Not Healed) - 2.63 (Amputation Category). This algorithm can serve as a valuable tool for predicting post-operative physical function and setting expectations.


Asunto(s)
Pie Diabético/fisiopatología , Pie Diabético/cirugía , Sistemas de Información , Medición de Resultados Informados por el Paciente , Recuperación de la Función , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Amputación Quirúrgica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas
7.
J Orthop Res ; 39(2): 389-401, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33336806

RESUMEN

Osteomyelitis is a devastating complication of orthopaedic surgery and commonly caused by Staphylococcus aureus (S. aureus) and Group B Streptococcus (GBS, S. agalactiae). Clinically, S. aureus osteomyelitis is associated with local inflammation, abscesses, aggressive osteolysis, and septic implant loosening. In contrast, S. agalactiae orthopaedic infections generally involve soft tissue, with acute life-threatening vascular spread. While preclinical models that recapitulate the clinical features of S. aureus bone infection have proven useful for research, no animal models of S. agalactiae osteomyelitis exist. Here, we compared the pathology caused by these bacteria in an established murine model of implant-associated osteomyelitis. In vitro scanning electron microscopy and CFU quantification confirmed similar implant inocula for both pathogens (~105 CFU/pin). Assessment of mice at 14 days post-infection demonstrated increased S. aureus virulence, as S. agalactiae infected mice had significantly greater body weight, and fewer CFU on the implant and in bone and adjacent soft tissue (p < 0.05). X-ray, µCT, and histologic analyses showed that S. agalactiae induced significantly less osteolysis and implant loosening, and fewer large TRAP+ osteoclasts than S. aureus without inducing intraosseous abscess formation. Most notably, transmission electron microscopy revealed that although both bacteria are capable of digesting cortical bone, S. agalactiae have a predilection for colonizing blood vessels embedded within cortical bone while S. aureus primarily colonizes the osteocyte lacuno-canalicular network. This study establishes the first quantitative animal model of S. agalactiae osteomyelitis, and demonstrates a vasculotropic mode of S. agalactiae infection, in contrast to the osteotropic behavior of S. aureus osteomyelitis.


Asunto(s)
Huesos/ultraestructura , Interacciones Huésped-Patógeno , Osteomielitis/microbiología , Staphylococcus aureus/fisiología , Streptococcus agalactiae/fisiología , Animales , Huesos/microbiología , Ratones , Osteomielitis/patología , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Relacionadas con Prótesis/patología , Infecciones Estafilocócicas/patología , Infecciones Estreptocócicas/patología
8.
Foot Ankle Int ; 42(3): 363-372, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33161780

RESUMEN

BACKGROUND: Conventional bacterial cultures frequently fail to identify the dominant pathogen in polymicrobial foot infections, in which Staphylococcus aureus is the most common infecting pathogen. Previous work has shown that species-specific immunoassays may be able to identify the main pathogen in musculoskeletal infections. We sought to investigate the clinical applicability of a S. aureus immunoassay to accurately identify the infecting pathogen and monitor its infectivity longitudinally in foot infection. We hypothesized that this species-specific immunoassay could aid in the diagnosis of S. aureus and track the therapeutic response in foot infections. METHODS: From July 2015 to July 2019, 83 infected foot ulcer patients undergoing surgical intervention (debridement or amputation) were recruited and blood was drawn at 0, 4, 8, and 12 weeks. Whole blood was analyzed for S. aureus-specific serum antibodies (mix of historic and new antibodies) and plasmablasts were isolated and cultured to quantify titers of newly synthesized antibodies (NSAs). Anti-S. aureus antibody titers were compared with culture results to assess their concordance in identifying S. aureus as the pathogen. The NSA titer changes at follow-ups were compared with wound healing status to evaluate concordance between evolving host immune response and clinically resolving or relapsing infection. RESULTS: Analysis of serum for anti-S. aureus antibodies showed significantly increased titers of 3 different anti-S. aureus antibodies, IsdH (P = .037), ClfB (P = .025), and SCIN (P = .005), in S. aureus culture-positive patients compared with culture-negative patients. Comparative analysis of combining antigens for S. aureus infection diagnosis increased the concordance further. During follow-up, changes of NSA titers against a single or combination of S. aureus antigens significantly correlated with clinically resolving or recurring infection represented by wound healing status. CONCLUSION: In the management of foot infection, the use of S. aureus-specific immunoassay may aid in diagnosis of the dominant pathogen and monitoring of the host immune response against a specific pathogen in response to treatment. Importantly, this immunoassay could detect recurrent foot infection, which may guide a surgeon's decision to intervene. LEVEL OF EVIDENCE: Level II, prospective comparative study.


Asunto(s)
Infecciones Bacterianas/diagnóstico , Pie Diabético/diagnóstico , Pie/fisiopatología , Infecciones Estafilocócicas/diagnóstico , Staphylococcus aureus/química , Amputación Quirúrgica/métodos , Infecciones Bacterianas/inmunología , Humanos , Inmunoensayo , Estudios Prospectivos , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología
9.
PLoS Pathog ; 16(10): e1008988, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33091079

RESUMEN

Staphylococcus aureus infection of bone is challenging to treat because it colonizes the osteocyte lacuno-canalicular network (OLCN) of cortical bone. To elucidate factors involved in OLCN invasion and identify novel drug targets, we completed a hypothesis-driven screen of 24 S. aureus transposon insertion mutant strains for their ability to propagate through 0.5 µm-sized pores in the Microfluidic Silicon Membrane Canalicular Arrays (µSiM-CA), developed to model S. aureus invasion of the OLCN. This screen identified the uncanonical S. aureus transpeptidase, penicillin binding protein 4 (PBP4), as a necessary gene for S. aureus deformation and propagation through nanopores. In vivo studies revealed that Δpbp4 infected tibiae treated with vancomycin showed a significant 12-fold reduction in bacterial load compared to WT infected tibiae treated with vancomycin (p<0.05). Additionally, Δpbp4 infected tibiae displayed a remarkable decrease in pathogenic bone-loss at the implant site with and without vancomycin therapy. Most importantly, Δpbp4 S. aureus failed to invade and colonize the OLCN despite high bacterial loads on the implant and in adjacent tissues. Together, these results demonstrate that PBP4 is required for S. aureus colonization of the OLCN and suggest that inhibitors may be synergistic with standard of care antibiotics ineffective against bacteria within the OLCN.


Asunto(s)
Osteomielitis/patología , Proteínas de Unión a las Penicilinas/metabolismo , Infecciones Estafilocócicas/complicaciones , Staphylococcus aureus/aislamiento & purificación , Animales , Antibacterianos/farmacología , Femenino , Ratones , Ratones Endogámicos BALB C , Osteomielitis/tratamiento farmacológico , Osteomielitis/metabolismo , Osteomielitis/microbiología , Proteínas de Unión a las Penicilinas/genética , Infecciones Estafilocócicas/microbiología , Vancomicina/farmacología
10.
Clin Diabetes ; 38(2): 132-140, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32327885

RESUMEN

Researchers investigated pain perception in patients with diabetic foot ulcers (DFUs) by analyzing pre- and postoperative physical function (PF), pain interference (PI), and depression domains of the Patient-Reported Outcome Measurement Information System (PROMIS). They hypothesized that 1) because of painful diabetic peripheral neuropathy (DPN), a majority of patients with DFUs would have high PROMIS PI scores unchanged by operative intervention, and 2) the initially assessed PI, PF, and depression levels would be correlated with final outcomes. Seventy-five percent of patients with DFUs reported pain, most likely because of painful DPN. Those who reported high PI and low PF were likely to report depression. PF, PI, and depression levels were unchanged after operative intervention or healing of DFUs.

11.
Bone Res ; 7: 20, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31646012

RESUMEN

Osteomyelitis is a devastating disease caused by microbial infection of bone. While the frequency of infection following elective orthopedic surgery is low, rates of reinfection are disturbingly high. Staphylococcus aureus is responsible for the majority of chronic osteomyelitis cases and is often considered to be incurable due to bacterial persistence deep within bone. Unfortunately, there is no consensus on clinical classifications of osteomyelitis and the ensuing treatment algorithm. Given the high patient morbidity, mortality, and economic burden caused by osteomyelitis, it is important to elucidate mechanisms of bone infection to inform novel strategies for prevention and curative treatment. Recent discoveries in this field have identified three distinct reservoirs of bacterial biofilm including: Staphylococcal abscess communities in the local soft tissue and bone marrow, glycocalyx formation on implant hardware and necrotic tissue, and colonization of the osteocyte-lacuno canalicular network (OLCN) of cortical bone. In contrast, S. aureus intracellular persistence in bone cells has not been substantiated in vivo, which challenges this mode of chronic osteomyelitis. There have also been major advances in our understanding of the immune proteome against S. aureus, from clinical studies of serum antibodies and media enriched for newly synthesized antibodies (MENSA), which may provide new opportunities for osteomyelitis diagnosis, prognosis, and vaccine development. Finally, novel therapies such as antimicrobial implant coatings and antibiotic impregnated 3D-printed scaffolds represent promising strategies for preventing and managing this devastating disease. Here, we review these recent advances and highlight translational opportunities towards a cure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA