Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biomed Imaging ; 2024: 2741986, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532840

RESUMEN

Background: MRI is an important tool for accurate detection and targeted biopsy of prostate lesions. However, the imaging appearances of some prostate cancers are similar to those of the surrounding normal tissue on MRI, which are referred to as MRI-invisible prostate cancers (MIPCas). The detection of MIPCas remains challenging and requires extensive systematic biopsy for identification. In this study, we developed a weakly supervised UNet (WSUNet) to detect MIPCas. Methods: The study included 777 patients (training set: 600; testing set: 177), all of them underwent comprehensive prostate biopsies using an MRI-ultrasound fusion system. MIPCas were identified in MRI based on the Gleason grade (≥7) from known systematic biopsy results. Results: The WSUNet model underwent validation through systematic biopsy in the testing set with an AUC of 0.764 (95% CI: 0.728-0.798). Furthermore, WSUNet exhibited a statistically significant precision improvement of 91.3% (p < 0.01) over conventional systematic biopsy methods in the testing set. This improvement resulted in a substantial 47.6% (p < 0.01) decrease in unnecessary biopsy needles, while maintaining the same number of positively identified cores as in the original systematic biopsy. Conclusions: In conclusion, the proposed WSUNet could effectively detect MIPCas, thereby reducing unnecessary biopsies.

2.
Comput Biol Med ; 165: 107332, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37598632

RESUMEN

Accurate grading of brain tumors plays a crucial role in the diagnosis and treatment of glioma. While convolutional neural networks (CNNs) have shown promising performance in this task, their clinical applicability is still constrained by the interpretability and robustness of the models. In the conventional framework, the classification model is trained first, and then visual explanations are generated. However, this approach often leads to models that prioritize classification performance or complexity, making it difficult to achieve a precise visual explanation. Motivated by these challenges, we propose the Unified Visualization and Classification Network (UniVisNet), a novel framework that aims to improve both the classification performance and the generation of high-resolution visual explanations. UniVisNet addresses attention misalignment by introducing a subregion-based attention mechanism, which replaces traditional down-sampling operations. Additionally, multiscale feature maps are fused to achieve higher resolution, enabling the generation of detailed visual explanations. To streamline the process, we introduce the Unified Visualization and Classification head (UniVisHead), which directly generates visual explanations without the need for additional separation steps. Through extensive experiments, our proposed UniVisNet consistently outperforms strong baseline classification models and prevalent visualization methods. Notably, UniVisNet achieves remarkable results on the glioma grading task, including an AUC of 94.7%, an accuracy of 89.3%, a sensitivity of 90.4%, and a specificity of 85.3%. Moreover, UniVisNet provides visually interpretable explanations that surpass existing approaches. In conclusion, UniVisNet innovatively generates visual explanations in brain tumor grading by simultaneously improving the classification performance and generating high-resolution visual explanations. This work contributes to the clinical application of deep learning, empowering clinicians with comprehensive insights into the spatial heterogeneity of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Imagen por Resonancia Magnética , Glioma/diagnóstico por imagen , Redes Neurales de la Computación , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/patología
3.
Bioengineering (Basel) ; 10(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37627772

RESUMEN

Deep networks have shown strong performance in glioma grading; however, interpreting their decisions remains challenging due to glioma heterogeneity. To address these challenges, the proposed solution is the Causal Segmentation Framework (CSF). This framework aims to accurately predict high- and low-grade gliomas while simultaneously highlighting key subregions. Our framework utilizes a shrinkage segmentation method to identify subregions containing essential decision information. Moreover, we introduce a glioma grading module that combines deep learning and traditional approaches for precise grading. Our proposed model achieves the best performance among all models, with an AUC of 96.14%, an F1 score of 93.74%, an accuracy of 91.04%, a sensitivity of 91.83%, and a specificity of 88.88%. Additionally, our model exhibits efficient resource utilization, completing predictions within 2.31s and occupying only 0.12 GB of memory during the test phase. Furthermore, our approach provides clear and specific visualizations of key subregions, surpassing other methods in terms of interpretability. In conclusion, the Causal Segmentation Framework (CSF) demonstrates its effectiveness at accurately predicting glioma grades and identifying key subregions. The inclusion of causality in the CSF model enhances the reliability and accuracy of preoperative decision-making for gliomas. The interpretable results provided by the CSF model can assist clinicians in their assessment and treatment planning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...