Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1332875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476692

RESUMEN

The models used to describe the light response of electron transport rate in photosynthesis play a crucial role in determining two key parameters i.e., the maximum electron transport rate (J max) and the saturation light intensity (I sat). However, not all models accurately fit J-I curves, and determine the values of J max and I sat. Here, three models, namely the double exponential (DE) model, the non-rectangular hyperbolic (NRH) model, and a mechanistic model developed by one of the coauthors (Z-P Ye) and his coworkers (referred to as the mechanistic model), were compared in terms of their ability to fit J-I curves and estimate J max and I sat. Here, we apply these three models to a series of previously collected Chl a fluorescence data from seven photosynthetic organisms, grown under different conditions. Our results show that the mechanistic model performed well in describing the J-I curves, regardless of whether photoinhibition/dynamic down-regulation of photosystem II (PSII) occurs. Moreover, both J max and I sat estimated by this model are in very good agreement with the measured data. On the contrary, although the DE model simulates quite well the J-I curve for the species studied, it significantly overestimates both the J max of Amaranthus hypochondriacus and the I sat of Microcystis aeruginosa grown under NH4 +-N supply. More importantly, the light intensity required to achieve the potential maximum of J (J s) estimated by this model exceeds the unexpected high value of 105 µmol photons m-2 s-1 for Triticum aestivum and A. hypochondriacus. The NRH model fails to characterize the J-I curves with dynamic down-regulation/photoinhibition for Abies alba, Oryza sativa and M. aeruginosa. In addition, this model also significantly overestimates the values of J max for T. aestivum at 21% O2 and A. hypochondriacus grown under normal condition, and significantly underestimates the values of J max for M. aeruginosa grown under NO3 -N supply. Our study provides evidence that the 'mechanistic model' is much more suitable than both the DE and NRH models in fitting the J-I curves and in estimating the photosynthetic parameters. This is a powerful tool for studying light harvesting properties and the dynamic down-regulation of PSII/photoinhibition.

2.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1281-1289, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37236945

RESUMEN

The frequency of drought will increase under further warming. The increase in atmospheric CO2 concentration, along with more frequent drought, will affect crop growth. We examined the changes of cell structure, photosynthetic physiology, antioxidant enzymes, osmotic regulatory substances, and yield of foxtail millet (Setaria ita-lica) leaves under different CO2 concentrations (ambient air CO2 concentration and ambient atmospheric CO2 concentration + 200 µmol·mol-1) and water treatment (soil moisture content maintained at 45%-55%, and 70%-80% of field capacity, representing mild drought and normal water condition, respectively). The results showed that elevated CO2 concentration increased the number of starch grains, the area of single starch grains, and the total area of starch grains in the chloroplast of millet mesophyll cells. Under mild drought condition, elevated CO2 concentration increased net photosynthetic rate of millet leaves at the booting stage by 37.9%, but did not affect water use efficiency at this stage. Elevated CO2 concentration increased net photosynthetic rate and water use efficiency of millet leaves under mild drought condition at the filling stage by 15.0% and 44.2%, respectively. Under mild drought condition, elevated CO2 concentration increased the content of peroxidase (POD) and soluble sugar in millet leaves at the booting stage by 39.3% and 8.0%, respectively, but decreased proline content by 31.5%. It increased the content of POD in millet leaves at the filling stage by 26.5% but decreased the content of MDA and proline by 37.2% and 39.3%, respectively. Under mild drought condition, elevated CO2 concentration significantly increased the number of grain spikes by 44.7% and yield by 52.3% in both years compared with normal water condition. The effect of elevated CO2 concentration on grain yield under mild drought conditions was higher than that under normal water condition. Under mild drought conditions, elevated CO2 concentration increased leaf thickness, vascular bundle sheath cross-sectional area, net photosynthetic rate, and water use efficiency of millet, improved the antioxidant oxidase activity, and changed the concentration of osmotic regulatory substances, alleviated the nega-tive effect of drought on foxtail millet, and finally increased the number of grains per ear and yield of foxtail millet. This study would provide a theoretical basis for millet production and sustainable agricultural development in arid areas under future climate change.


Asunto(s)
Setaria (Planta) , Setaria (Planta)/fisiología , Dióxido de Carbono , Antioxidantes , Sequías , Prolina , Almidón/farmacología
3.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4370-4380, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34951278

RESUMEN

Mechanisms underlying leaf photosynthetic acclimation in winter wheat under elevation of CO2 concentration ([CO2]) remain unclear. The aim of the study was to investigate the effects of source-sink variation on photosynthetic acclimation induced by drought under elevated [CO2]. A winter wheat (Triticum aestivum L. 'Zhengmai 9023') pot experiment was conducted in open top climate chambers with [CO2] of 400µmol·mol-1 or 600 µmol·mol-1 and soil water content at 80%±5% or 55%±5% of field capacity. The parameters of chlorophyll fluorescence, electron transport rate, photosynthetic curve, leaf nitrogen content, and grain yield were measured at the elongation and heading stages. Under drought condition, leaf PSⅡ photochemical efficiency was not affected by elevated [CO2], but the maximum electron transport rate and the ratio of electron partitioned to carboxylation reaction in Calvin cycle was increased at the elongation stage, and thus the Rubisco carboxylation rate and maximum photosynthetic rate were increased. Although the maximum electron transportation rate and partitioning ratio of electron to carboxylation reaction in Calvin cycle remained high at the heading stage, the PSⅡ photochemical efficiency, Rubisco carboxylation rate, and triose phosphate utilization rate were decreased by elevated [CO2], which consequently reduced the maximum photosynthetic rate for plant under drought stress. Under drought condition, elevated [CO2] increased wheat tiller biomass, kernel number, and kernel weight per ear, but decreased infertile kernel number, resulting in an overall increase in grain weight. In conclusion, the elevated [CO2]-induced increase in wheat grain yield per tiller under drought condition was mainly caused by enhanced photosynthetic performance at the elongation stage. The photosynthetic acclimation in source leaves during the heading stage under elevated [CO2] was mainly attributed to the reduction in PSⅡ photochemical efficiency and triose phosphate utilization rate, but not to the maximum electron transportation rate, ratio of electron partitioned to carboxylation in Calvin cycle or sink leaf strength.


Asunto(s)
Sequías , Triticum , Aclimatación , Dióxido de Carbono , Fotosíntesis , Hojas de la Planta
4.
Ying Yong Sheng Tai Xue Bao ; 32(1): 182-190, 2021 Jan.
Artículo en Chino | MEDLINE | ID: mdl-33477226

RESUMEN

The climate change caused by elevated CO2 concentration and drought are bound to affect the growth of soybean. Few studies have addressed the effects of elevated CO2 concentration on the physiology and biochemistry of soybean under drought stress. Here, we examined the changes of photosynthetic ability, photosynthetic pigment accumulation, antioxidant level, osmotic adjustment substances, hormone levels, signal transduction enzymes and gene expression level of soybean at flowering stage under different CO2 concentration (400 and 600 µmol·mol-1) and drought stress (normal water: leaf relative water content was 83%-90%; drought stress: leaf relative water content was 64%-70%). The results showed that the transpiration rate, water use efficiency and net photosynthetic rate of soybean leaves were significantly increased by elevated CO2 concentration, but the content of chlorophyll b was decreased under drought stress. Elevated CO2 concentration significantly increased peroxidase activity and abscisic acid content of leaves under drought stress, decreased the content of proline, and did not affect the content of soluble saccharides. The increased CO2 concentration under drought stress significantly promoted the content of calcium-dependent protein kinase and glutathione-S-transferase, and up-regulated the expression of related genes, while significantly decreased the content of mitogen-activated protein kinase and the heat shock protein, and down-regulated the expression of their genes. The results would be helpful to understand the impacts of climate change on the growth, physiology and biochemistry of soybean, and to deal with the production problems of soybean under future climate change.


Asunto(s)
Sequías , Glycine max , Dióxido de Carbono , Fotosíntesis , Hojas de la Planta , Agua
5.
Ying Yong Sheng Tai Xue Bao ; 28(6): 1969-1976, 2017 Jun 18.
Artículo en Chino | MEDLINE | ID: mdl-29745161

RESUMEN

We used an OTC (open top chamber) system to study the effects of elevated CO2 concentration (atmospheric CO2 concentration + 200 #x03BC;mol·mol-1) on the growth and photosynthetic physiology of Hylotelephium erythrostictum. Elevated CO2 concentration decreased the leaf stomatal density of the upper and lower epidermis of H. erythrostictum by 16.1% and 16.7%, respectively. Elevated CO2 concentration increased the vascular bundle in leaves and the cell volume near the upper epidermis. Elevated CO2 concentration significantly increased the photosynthetic pigments content, net photosynthetic rate, stomatal conductance and transpiration rate of H. erythrostictum at night. In the evening of initial flowering stage, elevated CO2 concentration significantly reduced the malic acid content by 64.0%, while increased cellulose content by 20.8%. In the morning of full flowering stage, elevated CO2 concentration significantly increased the malic acid content by 27.0%, but had no effect on carbohydrate content. Elevated CO2 concentration increased the number of branches per plant, stem mass and total biomass of H. erythrostictum. Elevated CO2 concentration was beneficial to the growth of H. erythrostictum.


Asunto(s)
Dióxido de Carbono , Nitrógeno , Fotosíntesis , Biomasa , Hojas de la Planta
6.
Ying Yong Sheng Tai Xue Bao ; 27(1): 117-24, 2016 Jan.
Artículo en Chino | MEDLINE | ID: mdl-27228600

RESUMEN

Field experiments were carried out to study the effects of different mulching times (30 or 60 d after previous wheat harvest) and mulching methods (whole-mulching, half-mulching and no- mulching) on wheat plant N absorption and assimilation after deep plowing in fallow period on dryland. The results showed that mulching improved water storage efficiency in fallow period and soil water storage of 0-300 cm at sowing stage significantly. Mulching in fallow period, especially the whole-mulching, increased the N accumulation amount of each growth stage, N translocation amount and rate before anthesis (NABA) , and N accumulation amount after anthesis (NAAA) and grain N. Yield, N uptake efficiency (NUPE), N partial factor productivity (NPFP) and N harvest index (NHI) were all significantly increased under mulching, and whole-mulching had better effects. Mulching at 30 d after previous wheat harvest significantly increased the soil water storage of 0-300 cm at sowing stage and the water storage efficiency in fallow period compared with mulching at 60 d after previous wheat harvest. Compared with mulching at 60 d after previous wheat harvest, mulching at 30 d increased the N accumulation amount of each growth stage, the N accumulation amount in leaf and shoot at maturity, the NABA of stem + sheath, leaf and shoot and the yield. The soil water at the depth of 0-300 cm at sowing stage was positively correlated to N mobilization amount before anthesis and N accumulation amount after anthesis. The N mobilization amount of stem + sheath had a remarkable direct effect on its yield with the direct path coefficient of 0.619. In summary, mulching in fallow period increased the soil moisture at sowing stage to promote N absorption and utilization, increase yield and improve quality, and whole-mulching in advance had better effects.


Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales/métodos , Nitrógeno/análisis , Triticum , Agua , Grano Comestible , Hojas de la Planta , Tallos de la Planta , Suelo
7.
Ying Yong Sheng Tai Xue Bao ; 22(10): 2776-80, 2011 Oct.
Artículo en Chino | MEDLINE | ID: mdl-22263487

RESUMEN

By using free air CO2 enrichment (FACE) system, a pot experiment under field condition was conducted to study the effects of elevated CO2 concentration (550 +/- 60 micromol mol(-1)) on the leaf photosynthesis and chlorophyll fluorescence parameters of mung bean. Comparing with the control (CO2 concentration averagely 389 +/- 40 micromol mol(-1)), elevated CO2 concentration increased the leaf intercellular CO2 concentration (Ci) and net photosynthesis rate (P(n)) at flowering and pod growth stage by 9.8% and 11.7%, decreased the stomatic conductance (G(s)) and transpiration rate (T(r)) by 32.0% and 24.6%, respectively, and increased the water use efficiency (WUE) by 83.5%. Elevated CO2 concentration had lesser effects on the minimal fluorescence (F0), maximal fluorescence (F(m)), variable fluorescence (F(v)), ratio of variable fluorescence to minimal fluorescence (F(v)/F0), and ratio of variable fluorescence to maximal fluorescence (F(v)/F(m)) at bud stage, but increased the F0 at pod filling stage by 19.1% and decreased the Fm, F(v), F(v)/F0, and F(v)/F(m) by 9.0%, 14.3%, 25.8% , and 6.2%, respectively. These results suggested that elevated CO2 concentration could damage the structure of leaf photosystem II and consequently decrease the leaf photosynthetic capacity in the late growth phase of mung bean.


Asunto(s)
Atmósfera/análisis , Dióxido de Carbono/análisis , Clorofila/metabolismo , Fabaceae/fisiología , Fotosíntesis/fisiología , Fluorescencia , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Hojas de la Planta/fisiología
8.
Ying Yong Sheng Tai Xue Bao ; 21(10): 2697-706, 2010 Oct.
Artículo en Chino | MEDLINE | ID: mdl-21328963

RESUMEN

Since the industrial revolution, the rapid increase of global atmospheric concentration of CO2 and other greenhouse gases has induced the global warming and the change of global precipitation pattern. The growth, development, yield, and quality of soybean are subject to all these changes of climatic conditions. Soybean is one of the major grain and oil crops in the world and in China, and any change in the soybean production under future climate scenario will affect the grain- and edible oil security nationally and internationally. This paper reviewed the effects of elevated atmospheric CO2, global warming, and water stress on soybean growth, and discussed the future research needs, which could provide scientific basis for realizing soybean production in the future and for implementing in advance proper policies in the context of climatic change impact on soybean production.


Asunto(s)
Biomasa , Dióxido de Carbono/análisis , Cambio Climático , Glycine max/crecimiento & desarrollo , Efecto Invernadero , China , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA