RESUMEN
This study aims to explore the neuroprotective effects of scalp Electroacupuncture (EA) on ischemic stroke, with a specific focus on the role of electrical stimulation (ES). Employing a rat model of middle cerebral artery occlusion (MCAO), we used methods such as Triphenyl tetrazolium chloride staining, micro-CT scanning, Enzyme linked immunosorbent assay (ELISA), and immunofluorescence to assess the impacts of EA. We further conducted RNA-seq analysis and in vitro experiments with organotypic brain slices and cerebral organoids to explore the underlying mechanisms. Our research revealed that EA notably reduced cerebral infarct volume and improved regional cerebral blood flow in rats following MCAO. Micro-CT imaging showed improved vascular integrity in EA-treated groups. Histological analyses, including HE staining, indicated reduced brain tissue damage. ELISA demonstrated a decrease in pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6, suggesting improved blood-brain barrier function. Immunofluorescence and Western blot analyses revealed that EA treatment significantly inhibited microglial and astrocytic overactivation. RNA-seq analysis of brain tissues highlighted a downregulation of immune pathways and inflammatory responses, confirming the neuroprotective role of EA. This was further corroborated by in vitro experiments using organotypic brain slices and cerebral organoids, which showcased the efficacy of electrical stimulation in reducing neuroinflammation and protecting neuronal cells. The study highlights the potential of scalp EA, particularly its ES component, in treating ischemic stroke. It provides new insights into the mechanisms of EA, emphasizing its efficacy in neuroprotection and modulation of neuroinflammation, and suggests avenues for optimized treatment strategies in stroke therapy.
RESUMEN
Rodent-infested bald spots are crucial indicators of rodent infestation in grasslands. Leveraging Unmanned Aerial Vehicle (UAV) remote sensing technology for discerning detrimental bald spots among plateau pikas has significant implications for assessing associated ecological hazards. Based on UAV-visible light imagery, we classified and recognized the characteristics of plateau pika habitats with five supervised classification algorithms, i.e., minimum distance classification (MinD), maximum likelihood classification (ML), support vector machine classification (SVM), Mahalanobis distance classification (MD), and neural network classification (NN) . The accuracy of the five methods was evaluated using a confusion matrix. Results showed that NN and SVM exhibited superior performance than other methods in identifying and classifying features indicative of plateau pika habitats. The mapping accuracy of NN for grassland and bald spots was 98.1% and 98.5%, respectively, with corresponding user accuracy was 98.8% and 97.7%. The overall model accuracy was 98.3%, with a Kappa coefficient of 0.97, reflecting minimal misclassification and omission errors. Through practical verification, NN exhibited good stability. In conclusion, the neural network method was suitable for identifying rodent-damaged bald spots within alpine meadows.
Asunto(s)
Algoritmos , Ecosistema , Pradera , Tecnología de Sensores Remotos , Roedores , Dispositivos Aéreos No Tripulados , Animales , Tecnología de Sensores Remotos/métodos , Lagomorpha , Redes Neurales de la Computación , Monitoreo del Ambiente/métodos , Máquina de Vectores de Soporte , ChinaRESUMEN
AIMS: Patients affected by functional mitral regurgitation represent an increasingly high-risk population. Edge-to-edge mitral valve repair (TEER) has emerged as a promising treatment option for these patients. However, there is limited research on the comparative outcomes of TEER versus surgical mitral valve repair (SMVr). This study seeks to compare the demographics, complications, and outcomes of TEER and SMVr based on a real-world analysis of the National Inpatient Sample (NIS) database. METHODS AND RESULTS: In the NIS database, from the years 2016 to 2018, a total of 6233 and 2524 patients who underwent SMVr and TEER were selected, respectively. The mean ages of the patients were 65.68 years (SMVr) and 78.40 years (TEER) (p < 0.01). The mortality rate of patients who received SMVr was similar to that of patients who were treated with TEER (1.7% vs. 1.9%, p = 0.603). Patients who underwent SMVr more likely suffered from perioperative complications including cardiogenic shock (2.3% vs. 0.4%, p < 0.001), cardiac arrest (1.7% vs. 1.1%, p = 0.025), and cerebrovascular infarction (0.9% vs. 0.4%, p = 0.013). The average length of hospital stay was longer (8.59 vs. 4.13 days, p < 0.001) for SMVr compared to TEER; however, the average cost of treatment was higher ($218 728.25 vs. $215 071.74, p = 0.031) for TEER compared to SMVr. Multiple logistic regression analysis showed that SMVr was associated with worse adjusted cardiogenic shock (OR, 7.347 [95% CI, 3.574-15.105]; p < 0.01) and acute kidney injury (OR, 2.793 [95% CI, 2.356-3.311]; p < 0.01). CONCLUSION: Patients who underwent TEER demonstrated a notable decrease in postoperative complications and a shorter hospitalization period when compared to those who underwent SMVr.
Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas , Insuficiencia de la Válvula Mitral , Válvula Mitral , Complicaciones Posoperatorias , Humanos , Insuficiencia de la Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/fisiopatología , Masculino , Femenino , Anciano , Válvula Mitral/cirugía , Resultado del Tratamiento , Estudios Retrospectivos , Implantación de Prótesis de Válvulas Cardíacas/métodos , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Complicaciones Posoperatorias/epidemiología , Estados Unidos/epidemiología , Persona de Mediana Edad , Anuloplastia de la Válvula Mitral/efectos adversos , Anuloplastia de la Válvula Mitral/métodos , Factores de Riesgo , Factores de Tiempo , Estudios de SeguimientoRESUMEN
The biosynthesis of cellulose, lignin, and hemicelluloses in plant secondary cell walls (SCWs) is regulated by a hierarchical transcriptional regulatory network. This network features orthologous transcription factors shared between poplar and Arabidopsis, highlighting a foundational similarity in their genetic regulation. However, knowledge on the discrepant behavior of the transcriptional-level molecular regulatory mechanisms between poplar and Arabidopsis remains limited. In this study, we investigated the function of PagMYB128 during wood formation and found it had broader impacts on SCW formation compared to its Arabidopsis ortholog, AtMYB103. Transgenic poplar trees overexpressing PagMYB128 exhibited significantly enhanced xylem development, with fiber cells and vessels displaying thicker walls, and an increase in the levels of cellulose, lignin, and hemicelluloses in the wood. In contrast, plants with dominant repression of PagMYB128 demonstrated the opposite phenotypes. RNA sequencing and reverse transcription - quantitative polymerase chain reaction showed that PagMYB128 could activate SCW biosynthetic gene expression, and chromatin immunoprecipitation along with yeast one-hybrid, and effector-reporter assays showed this regulation was direct. Further analysis revealed that PagSND1 (SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN1) directly regulates PagMYB128 but not cell wall metabolic genes, highlighting the pivotal role of PagMYB128 in the SND1-driven regulatory network for wood development, thereby creating a feedforward loop in SCW biosynthesis.
Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Madera , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Pared Celular/metabolismo , Madera/crecimiento & desarrollo , Madera/genética , Madera/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Xilema/metabolismo , Xilema/genética , Lignina/biosíntesis , Lignina/metabolismo , Plantas Modificadas Genéticamente , Genes de Plantas , Celulosa/biosíntesis , Celulosa/metabolismoRESUMEN
High-performance thermal interface materials (TIMs) are highly desired for high-power electronic devices to accelerate heat dissipation. However, the inherent trade-off conflict between achieving high thermal conductivity and excellent compliance of filler-enhanced TIMs results in the unsatisfactory interfacial heat transfer efficiency of existing TIM solutions. Here, we report the graphene fiber (GF)-based elastic TIM with metal-level thermal conductivity via mechanical-electric dual-field synergistic alignment engineering. Compared with state-of-the-art carbon fiber (CF), GF features both superb high thermal conductivity of â¼1200 W m-1 K-1 and outstanding flexibility. Under dual-field synergistic alignment regulation, GFs are vertically aligned with excellent orientation (0.88) and high array density (33.5 mg cm-2), forming continuous thermally conductive pathways. Even at a low filler content of â¼17 wt %, GF-based TIM demonstrates extraordinarily high through-plane thermal conductivity of up to 82.4 W m-1 K-1, exceeding most CF-based TIMs and even comparable to commonly used soft indium foil. Benefiting from the low stiffness of GF, GF-based TIM shows a lower compressive modulus down to 0.57 MPa, an excellent resilience rate of 95% after compressive cycles, and diminished contact thermal resistance as low as 7.4 K mm2 W-1. Our results provide a superb paradigm for the directed assembly of thermally conductive and flexible GFs to achieve scalable and high-performance TIMs, overcoming the long-standing bottleneck of mechanical-thermal mismatch in TIM design.
RESUMEN
BACKGROUND: A common psychological problem among nurses is depression, potentially affecting their well-being and job performance. It is vital to explore how to alleviate nurses' depressive symptoms. AIM: The current research explored the mediating impact of basic psychological needs satisfaction on the link of gratitude with depressive symptoms. METHODS: The nurses in this study were from mainland China. A total of 724 subjects completed an online questionnaire, which included measures of depressive symptoms, basic psychological needs satisfaction and gratitude. RESULTS: Our research found that gratitude was negatively linked to depressive symptoms. Furthermore, basic psychological needs satisfaction had a partial mediation effect on the link of gratitude with depressive symptoms after controlling for five demographic variables. These results suggest that gratitude may influence depressive symptoms via basic psychological needs satisfaction. LINKING EVIDENCE TO ACTION: Our study found that basic psychological need satisfaction partially mediates the gratitude-depression relationship in nurses. The result means that hospital administrators and nurse leaders should design gratitude interventions to alleviate nurses' depressive symptoms. They also help nurses decrease depressive symptoms by creating an environment that meets their basic psychological needs.
Asunto(s)
Depresión , Satisfacción en el Trabajo , Enfermeras y Enfermeros , Humanos , Femenino , Adulto , Masculino , China , Encuestas y Cuestionarios , Depresión/psicología , Enfermeras y Enfermeros/psicología , Enfermeras y Enfermeros/estadística & datos numéricos , Persona de Mediana Edad , Autonomía Personal , Pueblos del Este de AsiaRESUMEN
College students have a high prevalence of nomophobia. However, research on the effects of emotion regulation and resilience on nomophobia in China is lacking. This research investigated how cognitive reappraisal and expressive suppression strategies directly and indirectly affect nomophobia through resilience. Therefore, from March to May 2023, 756 university student volunteers (21.4 % men) were selected from a university in northeastern China for a questionnaire survey. Our findings suggest that college students' resilience has a masking effect on the relationship between cognitive reappraisal and nomophobia and can attenuate the negative effect of the frequency of using cognitive reappraisal strategies on nomophobia. The frequency of expressive suppression strategies directly and positively affected nomophobia. Early psychological interventions targeting resilience might be potentially effective in alleviating nomophobia among college students.
RESUMEN
The discovery of new genes with novel functions is a major driver of adaptive evolutionary innovation in plants. Especially in woody plants, due to genome expansion, new genes evolve to regulate the processes of growth and development. In this study, we characterized the unique VeA transcription factor family in Populus alba × Populus glandulosa, which is associated with secondary metabolism. Twenty VeA genes were characterized systematically on their phylogeny, genomic distribution, gene structure and conserved motif, promoter binding site, and expression profiling. Furthermore, through ChIP-qPCR, Y1H, and effector-reporter assays, it was demonstrated that PagMYB128 directly regulated PagVeA3 to influence the biosynthesis of secondary metabolites. These results provide a basis for further elucidating the function of VeAs gene in poplar and its genetic regulation mechanism.
Asunto(s)
Populus , Factores de Transcripción , Factores de Transcripción/genética , Populus/genética , Genómica , Sitios de Unión , BioensayoRESUMEN
Expansins are important plant cell wall proteins. They can loosen and soften the cell walls and lead to wall extension and cell expansion. To investigate their role in wood formation and fiber elongation, the PagEXPA1 that highly expressed in cell differentiation and expansion tissues was cloned from 84K poplar (Populus alba × P. glandulosa). The subcellular localization showed that PagEXPA1 located in the cell wall and it was highly expressed in primary stems and young leaves. Compared with non-transgenic 84K poplar, overexpression of PagEXPA1 can promote plant-growth, lignification, and fiber cell elongation, while PagEXPA1 Cas9-editing mutant lines exhibited the opposite phenotype. Transcriptome analysis revealed that DEGs were mainly enriched in some important processes, which are associated with cell wall formation and cellulose synthesis. The protein interaction prediction and expression analysis showed that PagCDKB2:1 and PagEXPA1 might have an interaction relationship. The luciferase complementary assay and bimolecular fluorescence complementary assay validated that PagEXPA1 can combined with PagCDKB2;1. So they promoted the expansion of xylem vascular tissues and the development of poplar though participating in the regulation of cell division and differentiation by programming the cell-cycle. It provides good foundation for molecular breeding of fast-growing and high-quality poplar varieties.
Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Plantas Modificadas Genéticamente , Perfilación de la Expresión Génica , Xilema/metabolismo , Xilema/genética , Desarrollo de la Planta/genética , Madera/genética , Madera/crecimiento & desarrolloRESUMEN
The photoperiod is a major environmental factor in flowering control. Water spinach flowering under the inductive short-day condition decreases the yield of vegetative tissues and the eating quality. To obtain an insight into the molecular mechanism of the photoperiod-dependent regulation of the flowering time in water spinach, we performed transcriptome sequencing on water spinach under long- and short-day conditions with eight time points. Our results indicated that there were 6615 circadian-rhythm-related genes under the long-day condition and 8691 under the short-day condition. The three key circadian-rhythm genes, IaCCA1, IaLHY, and IaTOC1, still maintained single copies and similar IaCCA1, IaLHY, and IaTOC1 feedback expression patterns, indicating the conservation of reverse feedback. In the photoperiod pathway, highly conserved GI genes were amplified into two copies (IaGI1 and IaGI2) in water spinach. The significant difference in the expression of the two genes indicates functional diversity. Although the photoperiod core gene FT was duplicated to three copies in water spinach, only IaFT1 was highly expressed and strongly responsive to the photoperiod and circadian rhythms, and the almost complete inhibition of IaFT1 in water spinach may be the reason why water spinach does not bloom, no matter how long it lasts under the long-day condition. Differing from other species (I. nil, I. triloba, I. trifida) of the Ipomoea genus that have three CO members, water spinach lacks one of them, and the other two CO genes (IaCO1 and IaCO2) encode only one CCT domain. In addition, through weighted correlation network analysis (WGCNA), some transcription factors closely related to the photoperiod pathway were obtained. This work provides valuable data for further in-depth analyses of the molecular regulation of the flowering time in water spinach and the Ipomoea genus.
Asunto(s)
Ipomoea , Fotoperiodo , Transcriptoma , Ipomoea/genética , Flores/genética , Flores/metabolismo , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
A highly enantioselective catalytic reduction of pyrazolo[1,5-a]pyrimidine to zanubrutinib has been realized by the Ir/(R)-t-Bu-FcPhox complex. This chiral product could be obtained in up to >99% ee in the asymmetric transformation without any other additives, providing a new route for the asymmetric synthesis of zanubrutinib.
RESUMEN
Nurses are at increased risk for developing depressive symptoms. While previous research has suggested that strength use may be inversely related to these symptoms, the longitudinal impact of strength use on nurses' depressive symptoms remains under-explored. This study sought to examine the longitudinal relationship between strength use and depressive symptoms among Chinese nurses. Using a two-wave cross-lagged design from 2020 to 2023, 321 nurses participated in an online questionnaire survey. Using structural equation modeling, our results supported the hypothesized reciprocal model, indicating that strength use can significantly predict a reduction in depressive symptoms and vice versa. Given these findings, there's an urgent need for nurse leaders to emphasize the importance of using nurses' strengths as a strategy to alleviate depressive symptoms.
Asunto(s)
Depresión , Humanos , Femenino , Adulto , China , Estudios Longitudinales , Masculino , Encuestas y Cuestionarios , Enfermeras y Enfermeros/psicología , Persona de Mediana Edad , Pueblos del Este de AsiaRESUMEN
Tumor-derived exosomes (TEXs) enriched in immune suppressive molecules predominantly drive T-cell dysfunction and impair antitumor immunity. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a promising treatment for refractory and relapsed hematological malignancies, but whether lymphoma TEXs have the same impact on CAR T-cell remains unclear. Here, we demonstrated that B-cell lymphoma-derived exosomes induce the initial activation of CD19-CAR T-cells upon stimulation with exosomal CD19. However, lymphoma TEXs might subsequently induce CAR T-cell apoptosis and impair the tumor cytotoxicity of the cells because of the upregulated expression of the inhibitory receptors PD-1, TIM3, and LAG3 upon prolonged exposure. Similar results were observed in the CAR T-cells exposed to plasma exosomes from patients with lymphoma. More importantly, single-cell RNA sequencing revealed that CAR T-cells typically showed differentiated phenotypes and regulatory T-cell (Treg) phenotype conversion. By blocking transforming growth factor ß (TGF-ß)-Smad3 signaling with TGF-ß inhibitor LY2109761, the negative effects of TEXs on Treg conversion, terminal differentiation, and immune checkpoint expression were rescued. Collectively, although TEXs lead to the initial activation of CAR T-cells, the effect of TEXs suppressed CAR T-cells, which can be rescued by LY2109761. A treatment regimen combining CAR T-cell therapy and TGF-ß inhibitors might be a novel therapeutic strategy for refractory and relapsed B-cell lymphoma.
RESUMEN
To investigate the effect and mechanism of Huogu injection (HG) on steroid-induced osteonecrosis of the femoral head (SONFH), we established a SONFH model in rabbits using horse serum and dexamethasone (DEX) and applied HG locally at the hip joint. We evaluated the therapeutic efficacy at 4 weeks using scanning electron microscopy (SEM), micro-CT, and qualitative histology including H&E, Masson's trichrome, ALP, and TUNEL staining. In vitro, we induced osteogenic differentiation of bone marrow stromal cells (BMSCs) and performed analysis on days 14 and 21 of cell differentiation. The findings, in vivo, including SEM, micro-CT, and H&E staining, showed that HG significantly maintained bone quality and trabecular number. ALP staining indicated that HG promoted the proliferation of bone cells. Moreover, the results of Masson's trichrome staining demonstrated the essential role of HG in collagen synthesis. Additionally, TUNEL staining revealed that HG reduced apoptosis. ALP and ARS staining in vitro confirmed that HG enhanced osteogenic differentiation and mineralization, consistent with the WB and qRT-PCR analysis. Furthermore, Annexin V-FITC/PI staining verified that HG inhibited osteoblast apoptosis, in agreement with the WB and qRT-PCR analyses. Furthermore, combined with the UPLC analysis, we found that naringin enhanced the osteogenic differentiation and accelerated the deposition of calcium phosphate. Salvianolic acid B protected osteoblasts derived from BMSCs against GCs-mediated apoptosis. Thus, this study not only reveals the mechanism of HG in promoting osteogenesis and anti-apoptosis of osteoblasts but also identifies the active-related components in HG, by which we provide the evidence for the application of HG in SONFH.
Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Conejos , Diferenciación Celular , Osteoblastos , Apoptosis , Células CultivadasRESUMEN
Highly thermally conductive graphitic film (GF) materials have become a competitive solution for the thermal management of high-power electronic devices. However, their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety. Here, we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks (LNS), which reveals a bubbling process characterized by "permeation-diffusion-deformation" phenomenon. To overcome this long-standing structural weakness, a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film (GF@Cu) with seamless heterointerface. This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K. Moreover, GF@Cu maintains high thermal conductivity up to 1088 W m-1 K-1 with degradation of less than 5% even after 150 LNS cycles, superior to that of pure GF (50% degradation). Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics.
RESUMEN
Besides increasing grain yield, improving rice (Oryza sativa L.) quality has been paid more and more attention recently. Cooking and eating quality (CEQ) is an important indicator of rice quality. Since CEQs are quantitative traits and challenging for measurement, efforts have mainly focused on two major genes, Wx and SSIIa. Chalkiness and floury endosperm significantly affect the eating quality of rice, leading to noticeable changes in CEQ. Due to the easily observable phenotype of floury endosperm, cloning single gene mutations that cause floury endosperm and evaluating changes in CEQs indirectly facilitate the exploration of the minor genes controlling CEQ. In this study, eight mutants with different degrees of floury endosperm, generated through ethylmethane sulfonate (EMS) mutagenesis, were analyzed. These mutants exhibited wide variation in starch morphology and CEQs. Particularly, the z2 mutant showed spherical starch granules significantly increased rapid visco analyzer (RVA) indexes and urea swelling, while the z4 mutant displayed extremely sharp starch granules and significantly decreased RVA indexes and urea swelling compared to the wild type. Additionally, these mutants still maintained correlations with certain RVA profiles, suggesting that the genes PUL, which affect these indexes, may not undergo mutation. Cloning these mutated genes in the future, especially in z2 and z4, will enhance the genetic network of rice eating quality and hold significant importance for molecular marker-assisted breeding to improve rice quality.
RESUMEN
In this study, we theoretically and experimentally demonstrate that the convolutional neural network (CNN) in combination with the residual blocks and the regression methods can be used to precisely and quickly reconstruct the OAM spectrum of a hybrid OAM mode no matter how the consistent OAM modes have the same or different order indices in both the azimuthal and the radial direction. For cases of the simulation testing, the mean errors of all recognized parameters for hybrid OAM modes in a four-mode fiber (4MF) and a six-mode fiber (6MF) are smaller than 0.003 and 0.008, respectively. To the best of our knowledge, this is the first time that all the OAM modes, probably existing in the core of 4MFs or 6MFs, can be precisely and quickly recognized from intensity distribution of the hybrid OAM mode itself via the deep learning method.
RESUMEN
Primary central nervous system lymphoma (PCNSL) is an uncommon non-Hodgkin's lymphoma with poor prognosis. This study aimed to depict the genetic landscape of Chinese PCNSLs. Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples, whose genomic characteristics and clinicopathologic features were also analyzed. Structural variations were identified in all patients with a mean of 349, which did not significantly influence prognosis. Copy loss occurred in all samples, while gains were detected in 77.9% of the samples. The high level of copy number variations was significantly associated with poor progression-free survival (PFS) and overall survival (OS). A total of 263 genes mutated in coding regions were identified, including 6 newly discovered genes (ROBO2, KMT2C, CXCR4, MYOM2, BCLAF1, and NRXN3) detected in ⩾ 10% of the cases. CD79B mutation was significantly associated with lower PFS, TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS. A prognostic risk scoring system was also established for PCNSL, which included Karnofsky performance status and six mutated genes (BRD4, EBF1, BTG1, CCND3, STAG2, and TMSB4X). Collectively, this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs, thereby enriching the present understanding of the genetic mechanisms of PCNSL.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Linfoma , Humanos , Variaciones en el Número de Copia de ADN , Proteínas Nucleares/genética , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Factores de Transcripción/genética , Pronóstico , Linfoma/genética , Genómica , China , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genéticaRESUMEN
Heavy metals (HMs), like vanadium (V), chromium (Cr), cadmium (Cd), and nickel (Ni) toxicity due to anthropogenic, impair plant growth and yield, which is a challenging issue for agricultural production. Melatonin (ME) is a stress mitigating molecule, which alleviates HM-induced phytotoxicity, but the possible underlying mechanism of ME functions under HMs' phytotoxicity is still unclear. Current study uncovered key mechanisms for ME-mediated HMs-stress tolerance in pepper. HMs toxicity greatly reduced growth by impeding leaf photosynthesis, root architecture system, and nutrient uptake. Conversely, ME supplementation markedly enhanced growth attributes, mineral nutrient uptake, photosynthetic efficiency, as measured by chlorophyll content, gas exchange elements, chlorophyll photosynthesis genes' upregulation, and reduced HMs accumulation. ME treatment showed a significant decline in the leaf/root V, Cr, Ni, and Cd concentration which was about 38.1/33.2%, 38.5/25.9%, 34.8/24.9%, and 26.6/25.1%, respectively, when compared with respective HM treatment. Furthermore, ME remarkably reduced the ROS (reactive oxygen species) accumulation, and reinstated the integrity of cellular membrane via activating antioxidant enzymes (SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; GR, glutathione reductase; POD, peroxidase; GST, glutathione S-transferase; DHAR, dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase) and as well as regulating ascorbate-glutathione (AsA-GSH) cycle. Importantly, oxidative damage showed efficient alleviations through upregulating the genes related to key defense such as SOD, CAT, POD, GR, GST, APX, GPX, DHAR, and MDHAR; along with the genes related to ME biosynthesis. ME supplementation also enhanced the level of proline and secondary metabolites, and their encoding genes expression, which may control excessive H2O2 (hydrogen peroxide) production. Finally, ME supplementation enhanced the HM stress tolerance of pepper seedlings.