Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 895: 165114, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379922

RESUMEN

The PM2.5-bound visibility improvement remains challenging in China despite vigorous control on anthropogenic emissions in recent years. One critical issue could exist in the distinct physicochemical properties especially of secondary aerosol components. Taken the COVID-19 lockdown as an extreme case, we focus on the relationship between visibility, emission cuts, and secondary formation of inorganics with changing optical and hygroscopic behaviors in Chongqing, a representative city characterized with humid weather and poor diffusion conditions in Sichuan Basin, southwest of China. It is found that the increased secondary aerosol abundance (e.g., PM2.5/CO and PM2.5/PM10 as a proxy) with enhanced atmospheric oxidative capacity (e.g., O3/Ox, Ox = O3 + NO2), combined with insignificant meteorological dilution effect, might partly offset the benefit on the improved visibility from substantial reduction in anthropogenic emissions during the COVID-19 lockdown. This is in line with the efficient oxidation rates of sulfur and nitrogen (i.e., SOR, NOR), increasing more significantly with PM2.5 and relative humidity (RH) in comparison to O3/Ox. The resulted larger fraction of nitrate and sulfate (i.e., fSNA) would promote the optical enhancement (i.e., f(RH)) and mass extinction efficiency (MEE) of PM2.5, especially under highly humid conditions (e.g., RH > 80 %, with approximately half of the occurrence frequency). This could further facilitate secondary aerosol formation via aqueous-phase reaction and heterogeneous oxidation, likely due to enhanced water uptake and enlarged size/surface area upon hydration. In combination of gradually increased atmospheric oxidative capacity, this positive feedback would in turn inhibit the visibility improvement particularly at high RH environment. Considering the current air pollution complex status over China, further work on the formation mechanisms of major secondary species (e.g., sulfate, nitrate, and secondary organics), size-resolved chemical and hygroscopic properties, together with their interactions are highly recommended. Our results are hoping to assist in the atmospheric pollution complex mitigation and prevention in China.

2.
Hortic Res ; 10(1): uhac224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643759

RESUMEN

Branch number is an important agronomic trait in peach (Prunus persica) trees because plant architecture affects fruit yield and quality. Although breeders can select varieties with different tree architecture, the biological mechanisms underlying architecture remain largely unclear. In this study, a pillar peach ('Zhaoshouhong') and a standard peach ('Okubo') were compared. 'Zhaoshouhong' was found to have significantly fewer secondary branches than 'Okubo'. Treatment with the synthetic strigolactone (SL) GR24 decreased branch number. Transcriptome analysis indicated that PpTCP18 (a homologous gene of Arabidopsis thaliana BRC1) expression was negatively correlated with strigolactone synthesis gene expression, indicating that PpTCP18 may play an important role in peach branching. Yeast one-hybrid, electrophoretic mobility shift, dual-luciferase assays and PpTCP18-knockdown in peach leaf buds indicated that PpTCP18 could increase expression of PpLBO1, PpMAX1, and PpMAX4. Furthermore, transgenic Arabidopsis plants overexpressing PpTCP18 clearly exhibited reduced primary rosette-leaf branches. Moreover, lncRNA sequencing and transient expression analysis revealed that lncRNA5 targeted PpTCP18, significantly increasing PpTCP18 expression. These results provide insights into the mRNA and lncRNA network in the peach SL signaling pathway and indicate that PpTCP18, a transcription factor downstream of SL signaling, is involved in positive feedback regulation of SL biosynthesis. This role of PpTCP18 may represent a novel mechanism in peach branching regulation. Our study improves current understanding of the mechanisms underlying peach branching and provides theoretical support for genetic improvement of peach tree architecture.

3.
Bioengineering (Basel) ; 9(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36354546

RESUMEN

Improving the efficiency of using energy and decreasing impacts on the environment will be an inevitable choice for future development. Based on this direction, three kinds of medium (modified anaerobic digestion wastewater, anaerobic digestion wastewater and a standard growth medium BG11) were used to culture microalgae towards achieving high-quality biodiesel products. The results showed that microalgae culturing with anaerobic digestate wastewater could increase lipid content (21.8%); however, the modified anaerobic digestion wastewater can boost the microalgal biomass production to 0.78 ± 0.01 g/L when compared with (0.35-0.54 g/L) the other two groups. Besides the first step lipid extraction, the elemental composition, thermogravimetric and pyrolysis products of the defatted microalgal residues were also analysed to delve into the utilisation potential of microalgae biomass. Defatted microalgae from modified wastewater by pyrolysis at 650 °C resulted in an increase in the total content of valuable products (39.47%) with no significant difference in the content of toxic compounds compared to other groups. Moreover, the results of the life cycle assessment showed that the environmental impact (388.9 mPET2000) was lower than that of raw wastewater (418.1 mPET2000) and standard medium (497.3 mPET2000)-cultivated groups. Consequently, the method of culturing microalgae in modified wastewater and pyrolyzing algal residues has a potential to increase renewable energy production and reduce environmental impact.

4.
Huan Jing Ke Xue ; 43(1): 102-112, 2022 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-34989494

RESUMEN

To investigate the characteristics of atmospheric volatile organic compound (VOCs) pollution and promote VOCs pollution prevention and control in industrial areas, in December 2020, VOCs samples collected using Summa Canisters at three observation sites were used to study the characteristics of VOCs pollution and source apportionment and to conduct a health risk assessment in large integrated industrial areas and surrounding urban areas in southwest China. The results showed that the mean φ(TVOCs) at site A and site B in an industrial area and at a third urban site were 105.25×10-9, 222.92×10-9, and 82.87×10-9, respectively. Monochloromethane, dichloromethane, acetone, ethanol, and ethane were the species with higher volume fractions at the three sites. Aromatic hydrocarbons and OVOCs had a large contribution to the ozone formation potential (OFP), with a cumulative contribution of more than 50%, and the main reactive species were methyl methacrylate, toluene, p-xylene, and o-xylene; the secondary organic aerosol formation potential (SOAP) of aromatic hydrocarbons contributed more than 80%, with the main active species being toluene, p-xylene, and o-xylene. The results of PMF source analysis showed six main sources of VOCs, in the descending order of the petrochemical industry (21.83%), industrial waste incineration (18.6%), pharmaceutical manufacturing (16.99%), fossil fuel combustion (16.03%), motor vehicle exhaust (14.23%), and chemical manufacturing (12.32%). The mean values of the hazard index (HI) of site A and site B in the industrial area and in the urban site were 0.55, 0.68, and 0.41, respectively, and the mean lifetime cancer risk (LCR) values were 6.71×10-6, 6.72×10-6, and 6.58×10-6, respectively. Both HI and LCR in industrial areas were larger than those in urban areas. The quantitative assessment of risk sources showed that motor vehicle exhaust and fossil fuel combustion contributed relatively high carcinogenic risks.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , China , Monitoreo del Ambiente , Residuos Industriales , Ozono/análisis , Medición de Riesgo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...