Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 1): 118604, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548254

RESUMEN

The effective degradation of recalcitrant lignocellulose has emerged as a bottleneck for the humification of compost, and strategies are required to improve the efficiency of bagasse composting. Bioaugmentation is a promising method for promoting compost maturation and improving the quality of final compost. In this study, the bioaugmentation effects of microbial inoculants on humic acid (HA) formation during lignocellulosic composting were explored. In the inoculated group, the maximum temperature was increased to 72.5 °C, and the phenol-protein condensation and Maillard humification pathways were enhanced, thus increasing the HA content by 43.85%. After inoculation, the intensity of the microbial community interactions increased, particularly for fungi (1.4-fold). Macrogenomic analysis revealed that inoculation enriched thermophilic bacteria and lignocellulose-degrading fungi and increased the activity of carbohydrate-active enzymes and related metabolic functions, which effectively disrupted the recalcitrant structure of lignocellulose to achieve a high humification degree. Spearman correlation analysis indicated that Stappia of the Proteobacteria phylum, Ilumatobacter of the Actinomycetes phylum, and eleven genera of Ascomycota were the main HA producers. This study provides new ideas for bagasse treatment and recycling and realizing the comprehensive use of resources.


Asunto(s)
Celulosa , Compostaje , Sustancias Húmicas , Estiércol , Sustancias Húmicas/análisis , Estiércol/microbiología , Celulosa/metabolismo , Compostaje/métodos , Animales , Bovinos , Bacterias/metabolismo , Lignina/metabolismo , Hongos/metabolismo
2.
Acta Biomater ; 171: 482-494, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37708924

RESUMEN

Therapeutic cancer nanovaccines can induce strong antitumor immunity and establish long-term immune memory and have shown potential for curing tumors in some clinical trials. However, weak immunogenicity and safety concerns of nanocarriers limit the clinical translation of some therapeutic nanovaccines. Here, we developed minimal-component cancer nanovaccines, monophosphoryl lipid A (MPLA)-assembled nanovaccines (MANs), that could facilitate the clinical application of nanovaccines. The MANs were formed by protein antigens extracted from chemotherapy-induced tumor cell cultures and the amphiphilic immune adjuvant MPLA. Compared with free chemotherapy-induced antigens, MANs can activate the Toll-like receptor 4 (TLR4)-mediated signalling pathway and promote adaptive immunity against tumor antigens. Mechanistic analysis indicated that MANs induced antigen capture of DCs and promoted the activation of DCs and T cells, thereby optimizing the ratio of CD8+ T/Tregs in tumors and facilitating the transformation of the tumor immune microenvironment (TIME) from "cold" to "hot". In a CT26 colorectal cancer model, MANs+αPD-1 significantly improved the efficacy of αPD-1 treatment. Our work offers a strategy for designing minimal-component cancer nanovaccines with potential clinical benefits. STATEMENT OF SIGNIFICANCE: To address the weak immunogenicity of cancer vaccines and the safety concerns of nanocarriers, we prepared MPLA-assembled nanovaccines (MANs) using chemotherapy induced antigens and the immune adjuvant MPLA to promote cancer vaccines to clinical practice. MANs effectively internalized tumor antigens and induced DC maturation, indicating that the initial anti-tumor response had been activated. MANs+αPD-1 induced APCs, CD8+ T cells and memory T cells with positive anti-tumor effects to migrate to tumor tissue, thus leading to the transformation of the tumor immune microenvironment from "cold" to "hot". At the animal level, the combination of MANs and αPD-1 exerted synergistic effects and significantly enhanced tumor immunotherapy. Therefore, the treatment regimen of MANs+αPD-1 has potential clinical benefits.


Asunto(s)
Antineoplásicos , Vacunas contra el Cáncer , Neoplasias , Animales , Humanos , Linfocitos T CD8-positivos , Inmunoterapia , Neoplasias/terapia , Neoplasias/metabolismo , Adyuvantes Inmunológicos/farmacología , Antígenos de Neoplasias , Antineoplásicos/farmacología , Microambiente Tumoral
3.
J Med Chem ; 66(19): 13607-13621, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37728887

RESUMEN

Chemoimmunotherapy is an area of active research and development with a growing body of evidence supporting its potential benefits for the treatment of cancer. However, chemotherapy components of chemoimmunotherapy have several limitations, including systemic toxicity and poor performance in reversing the immunosuppressive tumor microenvironment. Here, we designed a twin drug, MROP, complexed with all-trans retinoic acid and oxaliplatin, and showed that the twin drug significantly enhanced the synergetic therapeutic efficacy with anti-PD-1 in a colorectal cancer mouse model. We demonstrated by mechanistic analyses of tumor tissue that the combination of anti-PD-1 and MROP induced immunogenic cell death and regulated tumor-infiltrating immune cells, including the polarization of tumor-associated macrophages toward type 1, a reduction in myeloid-derived suppressor cells, and a significant increase in the proportion of T cells, particularly CD8+ T cells. This paper provides a promising strategy for cancer treatment and new insight into the mechanism of chemoimmunotherapy.

4.
J Med Chem ; 66(17): 12225-12236, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37665669

RESUMEN

Several chemoimmunotherapy regimens have been approved by the U.S. FDA, verifying the great clinical value and potential of the strategy. However, the immunomodulatory function of chemotherapy was insufficient, which did not provide extra overall survival benefits, especially in a head-to-head comparison of chemoimmunotherapy versus immunotherapy. Here, we engineered twin and triplet drugs derived from an immunogenic chemotherapeutic drug (oxaliplatin) and small-molecule inhibitors of negative immunoregulation pathways (COX2 and IDO) in tumors as an improved chemotherapeutic component within chemoimmunotherapy. The twin and triplet drugs exhibited significantly improved synergy with anti-PD-1 in a CT26 colorectal mouse tumor model. Mechanistic analyses revealed that the drug induced immunogenic cell death and restored tumor immune microenvironment toward tumor clearance in vivo, resulting in a great decrease in tumor-infiltrating Tregs and an increase in the CD8+ T/Treg ratio when combined with anti-PD-1. Our work expands the application of platinum twin drugs in combination with an immune checkpoint blockade.


Asunto(s)
Neoplasias Colorrectales , Platino (Metal) , Animales , Ratones , Platino (Metal)/uso terapéutico , Inmunoterapia , Inmunomodulación , Neoplasias Colorrectales/tratamiento farmacológico , Modelos Animales de Enfermedad , Microambiente Tumoral
5.
Biomaterials ; 301: 122290, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37643488

RESUMEN

Several chemoimmunotherapies have been approved by the FDA for the treatment of various cancers. Chemotherapy has the potential to improve the efficacy of immunotherapy by inducing immunogenic cell death (ICD) of tumor cells, promoting the release of tumor associated antigens (TAAs), tumor specific antigens (TSAs) and damage associated molecular patterns (DAMPs), and disrupting immunosuppressive microenvironments by tumor debulking. Unfortunately, systemic administration of chemotherapeutics carries side effects of blunting anti-cancer immune response through systemic immunosuppression, which deserves to be explored as an inner contradiction in chemoimmunotherapy. Here, we proposed the hypothesis of "immunogenicity equivalence" in chemoimmunotherapy that chemotherapeutics-induced immunogenic antigens and DAMPs in vitro that can subsequently be incorporated into nanovaccines, which will possess comparable immunostimulatory potential when compared to tumors treated with systemic chemotherapy in vivo. The proteomic analysis confirmed that our nanovaccines contained TAAs, TSAs and DAMPs. Improvement in treatment outcomes in tumor-bearing mice receiving anti-PD-1 and chemotherapy-induced nanovaccines was then observed. Furthermore, we demonstrated the feasibility of replacing long-term chemotherapy with nanovaccines in chemoimmunotherapy. Our nanovaccine strategy would be a general choice for formulating cancer vaccines in personalized medicine.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Proteómica , Neoplasias/tratamiento farmacológico , Inmunoterapia , Terapia de Inmunosupresión , Microambiente Tumoral
6.
Acta Biomater ; 154: 401-411, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36241013

RESUMEN

Immune checkpoint blockade (ICB) therapy has shown promising antitumor effects, but its immune response rate remains unsatisfactory. In recent years, chemotherapy has been proven to have synergistic effects with ICB therapy because some chemotherapeutic agents can enhance the immunogenicity of tumor cells by inducing immunogenic cell death (ICD). However, it cannot be ignored that chemotherapy often shows limited therapeutic efficacy due to high cytotoxicity, drug resistance, and some other side effects. Herein, we report a strategy to improve cancer immunotherapy by utilizing red blood cell-based vaccines (RBC-vaccines) where chemotherapy-induced tumor antigens (cAgs) are anchored onto red blood cells (RBCs) via the EDC/NHS-mediated amine coupling reaction. In this work, RBC-vaccines administered subcutaneously are primarily devoured by dendritic cells (DCs) and significantly improve the efficacy of αPD-1 (anti-programmed cell death 1) treatment by increasing the infiltration of intratumoral CD8+ and CD4+ T cells and elevating the intratumoral ratio of CD8+ T cells to regulatory T cells in the CT-26 colon cancer model. Finally, based on the rejection of tumor rechallenge in cured mice, the combination therapy of RBC-vaccines and αPD-1 can induce the expansion of memory T cells and thereby establish a long-term antitumor immune response. Taken together, the proposed RBC-vaccines have great potential to improve chemoimmunotherapy. STATEMENT OF SIGNIFICANCE: Immunotherapy, especially immune checkpoint blockade therapy, has made great contributions to the treatment of some advanced cancers. Unfortunately, the great majority of patients with cancer do not benefit from immunotherapy. To enhance the response rate of immunotherapy, we developed red blood cell-based vaccines (RBC-vaccines) against cancers where antigens were harvested from chemotherapy-treated cancer cells and then attached to erythrocytes via covalent surface modification. Such RBC-vaccines could provide a wide variety of tumor antigens and damage-associated molecular patterns without the use of any extra ingredients to trigger a stronger antitumor immune response. More importantly, the combination of RBC-vaccines with PD-1 blockade could significantly improve the efficacy of cancer immunotherapy and induce durable antitumor immunity.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Vacunas , Ratones , Animales , Linfocitos T CD8-positivos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Neoplasias/tratamiento farmacológico , Antígenos de Neoplasias , Vacunas/farmacología , Eritrocitos , Línea Celular Tumoral , Microambiente Tumoral
7.
Plant Cell ; 33(12): 3610-3620, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34463721

RESUMEN

Cryptochromes (crys) are photolyase-like blue-light receptors first discovered in Arabidopsis thaliana and later identified in all major evolutionary lineages. Crys are involved in not only blue light responses but also in temperature responses; however, whether and how cry protein stability is regulated by temperature remains unknown. Here, we show that cry2 protein abundance is modulated by ambient temperature and cry2 protein is degraded under low ambient temperature via the 26S proteasome. Consistent with this, cry2 shows high levels of ubiquitination under low ambient temperatures. Interestingly, cry2 degradation at low ambient temperatures occurs only under blue light and not under red light or dark conditions, indicating blue-light-dependent degradation of cry2 at low ambient temperature. Furthermore, low ambient temperature promotes physical interaction of Light-Response Bric-a-Brack/Tramtrack/Broad (LRB) proteins with cry2 to modulate its ubiquitination and protein stability in response to ambient temperature. LRBs promote high-temperature-induced hypocotyl elongation by modulating the protein stability of cry2 protein. These results indicate that cry2 accumulation is regulated by not only blue light but also ambient temperature, and LRBs are responsible for cry2 degradation at low ambient temperature. The stabilization of cry2 by high temperature makes cry2 a better negative regulator of temperature responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Frío , Criptocromos/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Criptocromos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-32700465

RESUMEN

Lung cancer is considered to cause the most cancer-related deaths worldwide. Due to the deficiency in early-stage diagnostics and local invasion or distant metastasis, the first line of treatment for most patients unsuitable for surgery is chemotherapy, targeted therapy or immunotherapy. Nanocarriers with the function of improving drug solubility, in vivo stability, drug distribution in the body, and sustained and targeted delivery, can effectively improve the effect of drug treatment and reduce toxic and side effects, and have been used in clinical treatment for lung cancer and many types of cancers. Here, we review nanoparticle (NP) formulation for lung cancer treatment including liposomes, polymers, and inorganic NPs via systemic and inhaled administration, and highlight the works of overcoming drug resistance and improving cancer immunotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Neoplasias , Sistemas de Liberación de Medicamentos , Resistencia a Medicamentos , Humanos , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Nanomedicina , Neoplasias/tratamiento farmacológico
9.
J Mater Chem B ; 8(42): 9785-9793, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33026402

RESUMEN

Nitric oxide (NO) is an important signaling molecule involved in various physiological and pathological processes. The effects of NO depend on its concentration, and the spatial and temporal constraints of the cell microenvironment. Meanwhile, NO can react with some biomolecules such as biothiols, leading to a short biological lifetime. Thus, it is very crucial to establish a real-time visualization method for monitoring NO levels. In this work, we have developed a fluorescent probe, RBA, for NO, with a 3-extended BODIPY as a fluorophore and a secondary amine as the active site. The probe RBA can quickly sense NO (∼10 s) in aerobic solutions to generate a fluorescent N-nitrosamine (RBA-NO, Φf = 0.87) due to blocking of the photoinduced electron transfer (PET) process from the secondary amine to the BODIPY core. This sensing reaction displays high sensitivity (LOD = 10 nM) and high selectivity for NO over relevant analytes except some reducing reagents including biothiols, and a remarkable interference effect is observed ascribed to a competitive reaction with biothiols. Furthermore, the exo- and endogenous detection of NO in live cells and zebra fish was achieved, and it was demonstrated that glutathione (GSH) weakens drastically the fluorescence response by cell-imaging experiments. These results imply that the colorimetric and fluorescence response of the chemosensor for NO depends on the levels of both NO and GSH in environments.


Asunto(s)
Compuestos de Boro/química , Colorantes Fluorescentes/química , Óxido Nítrico/análisis , Animales , Glutatión/química , Células HeLa , Células Hep G2 , Humanos , Ratones , Microscopía Fluorescente , Imagen Óptica , Células RAW 264.7 , Espectrometría de Fluorescencia , Pez Cebra/embriología
10.
Artículo en Inglés | MEDLINE | ID: mdl-31566896

RESUMEN

Immunotherapy has made great progress by modulating the body's own immune system to fight against cancer cells. However, the low response rates of related drugs limit the development of immunotherapy strategies. Fortunately, the advantages of nanotechnology can just make up for this shortcoming. Nanocarriers of diverse systems are utilized to co-deliver antigens and adjuvants, combined with drugs for immunomodulatory, such as chemotherapy, radiotherapy, and photodynamic. Here we review recent studies on immunotherapy with biomimetic, organic, and inorganic nanomaterials. They are going to potentially overcome the drawbacks in cancer immunotherapy with delivering immunomodulatory drugs, delivering cancer vaccine, and monitoring the immune systems. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Asunto(s)
Inmunoterapia , Nanomedicina , Neoplasias/terapia , Animales , Humanos , Ratones , Nanoestructuras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...