Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 457: 131699, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37270960

RESUMEN

Microplastics (MPs) as emerging contaminants have accumulated extensively in agricultural ecosystems and are known to exert important effects on biogeochemical processes. However, how MPs in paddy soils influence the conversion of mercury (Hg) to neurotoxic methylmercury (MeHg) remains poorly understood. Here, we evaluated the effects of MPs on Hg methylation and associated microbial communities in microcosms using two typical paddy soils in China (i.e., yellow and red soils). Results showed that the addition of MPs significantly increased MeHg production in both soils, which could be related to higher Hg methylation potential in the plastisphere than in the bulk soil. We found significant divergences in the community composition of Hg methylators between the plastisphere and the bulk soil. In addition, the plastisphere had higher proportions of Geobacterales in the yellow soil and Methanomicrobia in the red soil compared with the bulk soil, respectively; and plastisphere also had more densely connected microbial groups between non-Hg methylators and Hg methylators. These microbiota in the plastisphere are different from those in the bulk soil, which could partially account for their distinct MeHg production ability. Our findings suggest plastisphere as a unique biotope for MeHg production and provide new insights into the environment risks of MP accumulation in agricultural soils.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Microbiota , Oryza , Contaminantes del Suelo , Compuestos de Metilmercurio/química , Suelo/química , Plásticos , Contaminantes del Suelo/análisis , Mercurio/análisis , Oryza/química
2.
Environ Sci Technol ; 57(14): 5988-5998, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36995950

RESUMEN

Methylmercury (MeHg) is a potent neurotoxin and has great adverse health impacts on humans. Organisms and sunlight-mediated demethylation are well-known detoxification pathways of MeHg, yet whether abiotic environmental components contribute to MeHg degradation remains poorly known. Here, we report that MeHg can be degraded by trivalent manganese (Mn(III)), a naturally occurring and widespread oxidant. We found that 28 ± 4% MeHg could be degraded by Mn(III) located on synthesized Mn dioxide (MnO2-x) surfaces during the reaction of 0.91 µg·L-1 MeHg and 5 g·L-1 mineral at an initial pH of 6.0 for 12 h in 10 mM NaNO3 at 25 °C. The presence of low-molecular-weight organic acids (e.g., oxalate and citrate) substantially enhances MeHg degradation by MnO2-x via the formation of soluble Mn(III)-ligand complexes, leading to the cleavage of the carbon-Hg bond. MeHg can also be degraded by reactions with Mn(III)-pyrophosphate complexes, with apparent degradation rate constants comparable to those by biotic and photolytic degradation. Thiol ligands (cysteine and glutathione) show negligible effects on MeHg demethylation by Mn(III). This research demonstrates potential roles of Mn(III) in degrading MeHg in natural environments, which may be further explored for remediating heavily polluted soils and engineered systems containing MeHg.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Humanos , Manganeso/química , Compuestos de Metilmercurio/metabolismo , Oxidantes/química , Cisteína
3.
J Hazard Mater ; 439: 129578, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35853337

RESUMEN

Mercury (Hg) can be converted to neurotoxic methylmercury (MeHg) by certain microbes typically in anaerobic environments, threatening human health due to its bioaccumulation in food webs. However, it is unclear whether and how Hg can be methylated in legacy aerobic uplands with increasing water. Here, we conducted a series of incubation experiments to investigate the effects of increased water content on MeHg production in two typical upland soils (i.e., long-term and short-term use). Results showed that marked MeHg production occurred in water-saturated upland soils, which was strongly correlated with the proportions of significantly stimulated Hg methylating taxon (i.e., Geobacter). Elevated temperature further enhanced MeHg production by blooming proportions of typical Hg methylators (i.e., Clostridium, Acetonema, and Geobacter). Water saturation could also enhance microbial Hg methylation by facilitating microbial syntrophy between non-Hg methylators and Hg methylators. Taken together, the present work suggests that uplands could turn into a potential MeHg reservoir in response to water inputs resulting from rainfall or anthropogenic irrigation.


Asunto(s)
Geobacter , Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Humanos , Mercurio/análisis , Metilación , Suelo , Agua
4.
Environ Sci Technol ; 56(10): 6765-6773, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35483101

RESUMEN

The bioaccumulation of the neurotoxin methylmercury (MeHg) in rice is a significant concern due to its potential risk to humans. Thiols have been known to affect MeHg bioavailability in microorganisms, but how thiols influence MeHg accumulation in rice plants remains unknown. Here, we investigated effects of common low-molecular-weight thiols, including cysteine (Cys), glutathione (GSH), and penicillamine (PEN), on MeHg uptake and translocation by rice plants. Results show that rice roots can rapidly take up MeHg, and this process is influenced by the types and concentrations of thiols in the system. The presence of Cys facilitated MeHg uptake by roots and translocation to shoots, while GSH could only promote MeHg uptake, but not translocation, by roots. Conversely, PEN significantly inhibited MeHg uptake and translocation to shoots. Using labeled 13Cys assays, we also found that MeHg uptake was coupled with Cys accumulation in rice roots. Moreover, analyses of comparative transcriptomics revealed that key genes associated with metallothionein and SULTR transporter families may be involved in MeHg uptake. These findings provide new insights into the uptake and translocation of MeHg in rice plants and suggest potential roles of thiol attributes in affecting MeHg bioavailability and bioaccumulation in rice.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Cisteína , Humanos , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Suelo , Contaminantes del Suelo/análisis , Compuestos de Sulfhidrilo
5.
Environ Sci Technol ; 54(13): 7952-7960, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32437137

RESUMEN

Bioaccumulation of the neurotoxin methylmercury (MeHg) in rice has raised worldwide concerns because of its risks to human health. Certain microorganisms are able to degrade MeHg in pure cultures, but the roles and diversities of the microbial communities in MeHg degradation in rice paddy soils are unknown. Using a series of microcosms, we investigated MeHg degradation in paddy soils from Hunan, Guizhou, and Hubei provinces, representing three major rice production regions in China, and further characterized one of the soils from the Hunan Province for microbial communities associated with MeHg degradation. Microbial demethylation was observed in all three soils, demonstrated by significantly more MeHg degraded in the unsterilized soils than in the sterilized controls. More demethylation occurred in water-saturated soils than in unsaturated soils, but the addition of molybdate and bromoethanesulfonic acid as the respective inhibitors of sulfate reducing bacteria and methanogens showed insignificant effects on MeHg degradation. However, the addition of Cu enhanced MeHg degradation and the enrichment of Xanthomonadaceae in the unsaturated soil. 16S rRNA Illumina sequencing and metatranscriptomic analyses of the Hunan soil consistently revealed that Catenulisporaceae, Frankiaceae, Mycobacteriaceae, and Thermomonosporaceae were among the most likely microbial taxa in influencing MeHg degradation in the paddy soil, and they were confirmed by combined analyses of the co-occurrence network, random forest modeling, and linear discriminant analysis of the effect size. Our results shed additional light onto the roles of microbial communities in MeHg degradation in paddy soils and its subsequent bioaccumulation in rice grains.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Microbiota , Oryza , Contaminantes del Suelo , China , Humanos , Mercurio/análisis , ARN Ribosómico 16S , Suelo , Contaminantes del Suelo/análisis
6.
J Food Sci ; 76(6): M324-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22417504

RESUMEN

UNLABELLED: Powdered infant formula has previously been linked to the transmission of various bacterial pathogens in infants resulting in life-threatening disease and death. Survival studies of 2 common foodborne pathogens, Salmonella enterica serovar Typhi and Shigella dysenteriae, in powdered infant formula have not been previously studied despite the potentially devastating consequences from ingestion of these organisms, particularly by newborns, in case of a natural or deliberate contamination event. Therefore, to better predict the risk of S. Typhi and S. dysenteriae infection from consumption of infant formula, the present study was undertaken to determine survival of these microorganisms in dry infant formula under varying atmospheric conditions. A 2-strain cocktail of S. Typhi and a 3-strain cocktail of S. dysenteriae were stored for up to 12 wk in dehydrated infant formula in an ambient air or nitrogen atmosphere. Viable counts of S. Typhi at 12 wk in infant formula revealed a 2.9- and 1.69-log decrease in ambient air and nitrogen atmosphere, respectively. Viable counts of S. dysenteriae at 12 wk in infant formula revealed a 0.81- and 0.42-log decrease in ambient air and nitrogen atmosphere, respectively. These results show that S. Typhi and S. dysenteriae can remain viable for prolonged periods of time in powdered infant formula, and the presence of nitrogen enhances survival. PRACTICAL APPLICATION: Our goal in this work was to study the survival of S. Typhi and S. dysenteriae in dehydrated storage conditions in infant formula. This interest is partially generated by the possibility of using these 2 microorganisms to deliberately contaminate the food supply. The outcome of this study will help us to have a better idea how to respond and react to the risk of deliberate food contamination.


Asunto(s)
Alimentos en Conserva/microbiología , Fórmulas Infantiles , Viabilidad Microbiana , Salmonella typhi/crecimiento & desarrollo , Shigella dysenteriae/crecimiento & desarrollo , Recuento de Colonia Microbiana , Embalaje de Alimentos , Alimentos Fortificados/análisis , Alimentos Fortificados/microbiología , Alimentos en Conserva/análisis , Enfermedades Transmitidas por los Alimentos/prevención & control , Liofilización , Humanos , Lactante , Fórmulas Infantiles/química , Hierro de la Dieta/antagonistas & inhibidores , Nitrógeno/metabolismo , Oxígeno/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...