Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neurochem Int ; 174: 105695, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38373478

RESUMEN

The neuron-specific K+/Cl- co-transporter 2, KCC2, which is critical for brain development, regulates γ-aminobutyric acid-dependent inhibitory neurotransmission. Consistent with its function, mutations in KCC2 are linked to neurodevelopmental disorders, including epilepsy, schizophrenia, and autism. KCC2 possesses 12 transmembrane spans and forms an intertwined dimer. Based on its complex architecture and function, reduced cell surface expression and/or activity have been reported when select disease-associated mutations are present in the gene encoding the protein, SLC12A5. These data suggest that KCC2 might be inherently unstable, as seen for other complex polytopic ion channels, thus making it susceptible to cellular quality control pathways that degrade misfolded proteins. To test these hypotheses, we examined KCC2 stability and/or maturation in five model systems: yeast, HEK293 cells, primary rat neurons, and rat and human brain synaptosomes. Although studies in yeast revealed that KCC2 is selected for endoplasmic reticulum-associated degradation (ERAD), experiments in HEK293 cells supported a more subtle role for ERAD in maintaining steady-state levels of KCC2. Nevertheless, this system allowed for an analysis of KCC2 glycosylation in the ER and Golgi, which serves as a read-out for transport through the secretory pathway. In turn, KCC2 was remarkably stable in primary rat neurons, suggesting that KCC2 folds efficiently in more native systems. Consistent with these data, the mature glycosylated form of KCC2 was abundant in primary rat neurons as well as in rat and human brain. Together, this work details the first insights into the influence that the cellular and membrane environments have on several fundamental KCC2 properties, acknowledges the advantages and disadvantages of each system, and helps set the stage for future experiments to assess KCC2 in a normal or disease setting.


Asunto(s)
Cotransportadores de K Cl , Animales , Humanos , Ratas , Degradación Asociada con el Retículo Endoplásmico , Células HEK293 , Cotransportadores de K Cl/metabolismo , Cloruro de Potasio/metabolismo , Saccharomyces cerevisiae/metabolismo , Simportadores/genética , Simportadores/metabolismo
2.
Acta Biomater ; 96: 321-329, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31326665

RESUMEN

Embryonic stem cells (ESC) are excellent cell culture systems for elucidating developmental signals that may be part of the stem cell niche. Although stem cells are traditionally induced using predominately soluble signals, the mechanical environment of the niche can also play a role in directing cells towards differential cell lineages. Interested in diverging vascular fates, we set out to examine to what extent mechanical signaling played a role in endothelial cell and/or smooth muscle fate. Using chemically-defined staged vascular differentiation methods, vascular progenitor cells (VPC) fate was examined on single stiffness polyacrylamide hydrogels of 10 kPa, 40 kPa and >0.1 GPa. Emergence of vascular cell populations aligned with corresponding hydrogel stiffness: EC-lineages favoring the softer material and SMC lineages favoring the stiffest material. Statistical significance was observed on both cell lines on almost all days. Transcriptome analysis indicated that the populations on the varying stiffness emerge in distinct categories. Lastly, blocking studies show that αvß1, and not αvß6, activation mediates stiffness-directed vascular differentiation. Overall, these studies indicate that softer materials direct VPCs into a more EC-like fate compared to stiffer materials. STATEMENT OF SIGNIFICANCE: Although stem cells are traditionally induced using predominately soluble signals, the mechanical environment of the niche also plays a role in directing cell fate. Several studies have examined the stiffness-induced cell fate from mesenchymal stem cells (MSCs) and undifferentiated embryonic stem cells (ESCs). This is the first study that rigorously examines the role of matrix stiffness in diverging vascular fates from a purified population of vascular progenitor cells (VPCs). We show that the emergence of endothelial cell (EC) versus smooth muscle cell (SMC) populations corresponds with hydrogel stiffness: EC-lineages favoring the softness material and SMC lineages favoring the stiffest material, and that αvß1 activation mediates this stiffness-directed vascular differentiation.


Asunto(s)
Resinas Acrílicas/química , Vasos Sanguíneos/fisiología , Hidrogeles/química , Fenómenos Mecánicos , Resinas Acrílicas/farmacología , Animales , Vasos Sanguíneos/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Hidrogeles/farmacología , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Nat Biomed Eng ; 3(2): 147-157, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30923642

RESUMEN

Dilated cardiomyopathy (DCM) is a leading cause of morbidity and mortality worldwide; yet how genetic variation and environmental factors impact DCM heritability remains unclear. Here, we report that compound genetic interactions between DNA sequence variants contribute to the complex heritability of DCM. By using genetic data from a large family with a history of DCM, we discovered that heterozygous sequence variants in the TROPOMYOSIN 1 (TPM1) and VINCULIN (VCL) genes cose-gregate in individuals affected by DCM. In vitro studies of patient-derived and isogenic human-pluripotent-stem-cell-derived cardio-myocytes that were genome-edited via CRISPR to create an allelic series of TPM1 and VCL variants revealed that cardiomyocytes with both TPM1 and VCL variants display reduced contractility and sarcomeres that are less organized. Analyses of mice genetically engineered to harbour these human TPM1 and VCL variants show that stress on the heart may also influence the variable penetrance and expressivity of DCM-associated genetic variants in vivo. We conclude that compound genetic variants can interact combinatorially to induce DCM, particularly when influenced by other disease-provoking stressors.


Asunto(s)
Cardiomiopatía Dilatada/genética , Predisposición Genética a la Enfermedad , Variación Genética , Animales , Cardiomiopatía Dilatada/fisiopatología , Matriz Extracelular/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Patrón de Herencia/genética , Masculino , Ratones , Modelos Biológicos , Contracción Muscular/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Linaje , Células Madre Pluripotentes/metabolismo , Regulación hacia Arriba/genética
4.
Mol Biol Cell ; 28(14): 1950-1958, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28495800

RESUMEN

Motor neuron (MN) diseases are progressive disorders resulting from degeneration of neuromuscular junctions (NMJs), which form the connection between MNs and muscle fibers. NMJ-in-a-dish models have been developed to examine human MN-associated dysfunction with disease; however such coculture models have randomly oriented myotubes with immature synapses that contract asynchronously. Mechanically patterned (MP) extracellular matrix with alternating soft and stiff stripes improves current NMJ-in-a-dish models by inducing both mouse and human myoblast durotaxis to stripes where they aligned, differentiated, and fused into patterned myotubes. Compared to conventional culture on rigid substrates or unpatterned hydrogels, MP substrates supported increased differentiation and fusion, significantly larger acetylcholine (ACh) receptor clusters, and increased expression of MuSK and Lrp4, two cell surface receptors required for NMJ formation. Robust contractions were observed when mouse myotubes were stimulated by ACh, with twitch duration and frequency most closely resembling those for mature muscle on MP substrates. Fused myotubes, when cocultured with MNs, were able to form even larger NMJs. Thus MP matrices produce more functionally active NMJs-in-a-dish, which could be used to elucidate disease pathology and facilitate drug discovery.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología , Unión Neuromuscular/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Humanos , Proteínas Relacionadas con Receptor de LDL , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Mioblastos/citología , Proteínas Tirosina Quinasas Receptoras , Receptores Colinérgicos , Células Madre/citología
5.
Biosens Bioelectron ; 89(Pt 1): 400-410, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27268013

RESUMEN

Dopamine (DA) is a monoamine neurotransmitter responsible for regulating a variety of vital life functions. In vivo detection of DA poses a challenge due to the low concentration and high speed of physiological signaling. Fast scan cyclic voltammetry at carbon fiber microelectrodes (CFEs) is an effective method to monitor real-time in vivo DA signaling, however the sensitivity is somewhat limited. Electrodeposition of poly(3,4-ethylene dioxythiophene) (PEDOT)/graphene oxide (GO) onto the CFE surface is shown to increase the sensitivity and lower the limit of detection for DA compared to bare CFEs. Thicker PEDOT/GO coatings demonstrate higher sensitivities for DA, but display the negative drawback of slow adsorption and electron transfer kinetics. The moderate thickness resulting from 25 s electrodeposition of PEDOT/GO produces the optimal electrode, exhibiting an 880% increase in sensitivity, a 50% decrease in limit of detection and minimally altered electrode kinetics. PEDOT/GO coated electrodes rapidly and robustly detect DA, both in solution and in the rat dorsal striatum. This increase in DA sensitivity is likely due to increasing the electrode surface area with a PEDOT/GO coating and improved adsorption of DA's oxidation product (DA-o-quinone). Increasing DA sensitivity without compromising electrode kinetics is expected to significantly improve our understanding of the DA function in vivo.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Cuerpo Estriado/química , Dopamina/análisis , Técnicas Electroquímicas/métodos , Grafito/química , Polímeros/química , Animales , Técnicas Biosensibles/métodos , Galvanoplastia , Límite de Detección , Masculino , Microelectrodos , Ratas , Ratas Sprague-Dawley
6.
Circ Res ; 118(2): 296-310, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26838315

RESUMEN

Soluble morphogen gradients have long been studied in the context of heart specification and patterning. However, recent data have begun to challenge the notion that long-standing in vivo observations are driven solely by these gradients alone. Evidence from multiple biological models, from stem cells to ex vivo biophysical assays, now supports a role for mechanical forces in not only modulating cell behavior but also inducing it de novo in a process termed mechanotransduction. Structural proteins that connect the cell to its niche, for example, integrins and cadherins, and that couple to other growth factor receptors, either directly or indirectly, seem to mediate these changes, although specific mechanistic details are still being elucidated. In this review, we summarize how the wingless (Wnt), transforming growth factor-ß, and bone morphogenetic protein signaling pathways affect cardiomyogenesis and then highlight the interplay between each pathway and mechanical forces. In addition, we will outline the role of integrins and cadherins during cardiac development. For each, we will describe how the interplay could change multiple processes during cardiomyogenesis, including the specification of undifferentiated cells, the establishment of heart patterns to accomplish tube and chamber formation, or the maturation of myocytes in the fully formed heart.


Asunto(s)
Diferenciación Celular , Corazón/embriología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mecanotransducción Celular , Células Madre/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cadherinas/metabolismo , Edad Gestacional , Humanos , Integrinas/metabolismo , Organogénesis , Estrés Mecánico , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...