Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 92(4): e0008424, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38470113

RESUMEN

Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.


Asunto(s)
Lipoproteínas , Enfermedad de Lyme , Anticuerpos de Dominio Único , Animales , Perros , Humanos , Vacunas contra Enfermedad de Lyme , Epítopos , Anticuerpos Antibacterianos , Vacunas Bacterianas , Proteínas de la Membrana Bacteriana Externa , Enfermedad de Lyme/prevención & control , Antígenos de Superficie , Anticuerpos Monoclonales
2.
Anal Chem ; 96(4): 1522-1529, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38237105

RESUMEN

Hydrogen exchange-mass spectrometry (HX-MS) is a valuable analytical technique that can provide insight into protein interactions and structure. The deuterium labeling necessary to gain this insight is affected by many physical and chemical factors, making it challenging to achieve high reproducibility. Poor precision during dispensing, transfer, and mixing of solutions during the experiment contributes substantially to the overall variability. While the use of a robotic liquid handler can potentially improve precision, its operation must be optimized. We observed poor precision in data collected using a robotic liquid handler to perform HX-MS. In this work, we describe how we were able to improve that system's precision considerably based on tracking performance using caffeine, caffeine-d3, and caffeine-d9 as tracers for the sample, label, and quench to report on each operation of the liquid handling workflow. The insights gained about liquid handler performance and the three-tracer approach can aid in optimizing HX-MS workflow operations, whether performed manually or when using a liquid handling system. Additionally, these tracers can be incorporated as internal tracers during an experiment to report on the labeling and quench operations of each sample throughout the run and, if desired, be used to implement an uptake correction described previously.

3.
Proteins ; 91(11): 1463-1470, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37455569

RESUMEN

319-44 is a human monoclonal antibody capable of passively protecting mice against tick-mediated infection with Borreliella burgdorferi, the bacterial genospecies responsible for Lyme disease in North America. In vitro, 319-44 has complement-dependent borreliacidal activity and spirochete agglutinating properties. Here, we report the 2.2 Å-resolution crystal structure of 319-44 Fab fragments in complex with Outer surface protein A (OspA), the ~30 kDa lipoprotein that was the basis of the first-generation Lyme disease vaccine approved in the United States. The 319-44 epitope is focused on OspA ß-strands 19, 20, and 21, and the loops between ß-strands 16-17, 18-19, and 20-21. Contact with loop 20-21 explains competition with LA-2, the murine monoclonal antibody used to estimate serum borreliacidal activities in the first-generation Lyme disease vaccine clinical trials. A high-resolution B-cell epitope map of OspA will accelerate structure-based design of second generation OspA-based vaccines.

4.
mBio ; 14(2): e0298122, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36976016

RESUMEN

Outer surface protein C (OspC) plays a pivotal role in mediating tick-to-host transmission and infectivity of the Lyme disease spirochete, Borreliella burgdorferi. OspC is a helical-rich homodimer that interacts with tick salivary proteins, as well as components of the mammalian immune system. Several decades ago, it was shown that the OspC-specific monoclonal antibody, B5, was able to passively protect mice from experimental tick-transmitted infection by B. burgdorferi strain B31. However, B5's epitope has never been elucidated, despite widespread interest in OspC as a possible Lyme disease vaccine antigen. Here, we report the crystal structure of B5 antigen-binding fragments (Fabs) in complex with recombinant OspC type A (OspCA). Each OspC monomer within the homodimer was bound by a single B5 Fab in a side-on orientation, with contact points along OspC's α-helix 1 and α-helix 6, as well as interactions with the loop between α-helices 5 and 6. In addition, B5's complementarity-determining region (CDR) H3 bridged the OspC-OspC' homodimer interface, revealing the quaternary nature of the protective epitope. To provide insight into the molecular basis of B5 serotype specificity, we solved the crystal structures of recombinant OspC types B and K and compared them to OspCA. This study represents the first structure of a protective B cell epitope on OspC and will aid in the rational design of OspC-based vaccines and therapeutics for Lyme disease. IMPORTANCE The spirochete Borreliella burgdorferi is a causative agent of Lyme disease, the most common tickborne disease in the United States. The spirochete is transmitted to humans during the course of a tick taking a bloodmeal. After B. burgdorferi is deposited into the skin of a human host, it replicates locally and spreads systemically, often resulting in clinical manifestations involving the central nervous system, joints, and/or heart. Antibodies directed against B. burgdorferi's outer surface protein C (OspC) are known to block tick-to-host transmission, as well as dissemination of the spirochete within a mammalian host. In this report, we reveal the first atomic structure of one such antibody in complex with OspC. Our results have implications for the design of a Lyme disease vaccine capable of interfering with multiple stages in B. burgdorferi infection.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Garrapatas , Humanos , Animales , Ratones , Borrelia burgdorferi/metabolismo , Epítopos de Linfocito B/genética , Vacunas contra Enfermedad de Lyme , Antígenos Bacterianos , Enfermedad de Lyme/prevención & control , Proteínas de la Membrana Bacteriana Externa/química , Mamíferos/metabolismo
5.
J Am Soc Mass Spectrom ; 34(1): 123-127, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36449379

RESUMEN

In this paper, we introduce a screening protocol for epitope mapping by hydrogen exchange mass spectrometry (HX-MS) that has higher throughput than a traditional HX-MS epitope mapping. In the screening protocol, three HX labeling times (20, 1000, and 86400 s) are each measured without replicates. The experimental protocol is anchored on a single epitope mapping experiment conducted using the traditional complete protocol (five HX times measured in triplicate) that is used to define HX times and define significance limits. Previously, we reported traditional epitope mapping results on the Borrelia burgdorferi outer surface protein A (OspA) antigen that are in excellent agreement with the X-ray crystallography results. Here, we show that the screening protocol and complete HX-MS identify identical epitopes of OspA but that the screening protocol has a 5-fold higher throughput.


Asunto(s)
Antígenos , Hidrógeno , Mapeo Epitopo/métodos , Hidrógeno/química , Epítopos/química , Espectrometría de Masas/métodos
6.
ACS Infect Dis ; 8(12): 2515-2528, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350351

RESUMEN

The Lyme disease (LD) vaccine formerly approved for use in the United States consisted of recombinant outer surface protein A (OspA) from Borrelia burgdorferi sensu stricto (ss), the bacterial genospecies responsible for the vast majority of LD in North America. OspA is an ∼30 kDa lipoprotein made up of 21 antiparallel ß-strands and a C-terminal α-helix. In clinical trials, protection against LD following vaccination correlated with serum antibody titers against a single epitope near the C-terminus of OspA, as defined by the mouse monoclonal antibody (MAb), LA-2. However, the breadth of the human antibody response to OspA following vaccination remains undefined even as next-generation multivalent OspA-based vaccines are under development. In this report, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes recognized by a unique panel of OspA human MAbs, including four shown to passively protect mice against experimental B. burgdorferi infection and one isolated from a patient with antibiotic refractory Lyme arthritis. The epitopes grouped into three spatially distinct bins that, together, encompass more than half the surface-exposed area of OspA. The bins corresponded to OspA ß-strands 8-10 (bin 1), 11-13 (bin 2), and 16-20 plus the C-terminal α-helix (bin 3). Bin 3 was further divided into sub-bins relative to LA-2's epitope. MAbs with complement-dependent borreliacidal activity, as well as B. burgdorferi transmission-blocking activity in the mouse model were found within each bin. Therefore, the resulting B cell epitope map encompasses functionally important targets on OspA that likely contribute to immunity to B. burgdorferi.


Asunto(s)
Epítopos de Linfocito B , Vacunas contra Enfermedad de Lyme , Humanos , Ratones , Animales , Espectrometría de Masas , Lipoproteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...