Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38581340

RESUMEN

Objectives: Continuous and excessive secretion of pro-inflammatory and anti-inflammatory chemicals and cytokines may further deteriorate inflammation. Anti-inflammatory drugs play an imperative role in inhibiting the evolution of inflammatory diseases. As per the Unani doctrine, a holistic treatment approach is used to treat illnesses. Therefore, drugs having different actions are used to achieve the synergic effect. Three drugs (Cinnamomum zeylanicum, Alpinia galanga, and Withania somnifera), which are frequently used in Unani medicine for joint disorders were selected to evaluate the anti-inflammatory activity of the extract derived from them. Methods: We used RAW 264.7 macrophage cells to see the expression of inflammatory markers IL-1ß, IL-6, and TNF-α. Cytotoxic activity was assessed with MTT assay and Nitric Oxide (NO) was evaluated using Griess reagent. Further, anti-inflammatory activity was evaluated in Wistar Albino rats using carrageenan-induced paw oedema and immunohistochemistry assays for Cyclooxygenase-2 (COX-2). All the data were analyzed using ANOVA and Dunnett t test for multiple comparisons. Results: This extract did not show any cytotoxic effect and the gene expression was significantly reduced for IL-1ß, IL-6, and TNF-α in a dose-dependent manner. Further, NO production was also significantly reduced in the test groups. Immunohistochemistry revealed that the test groups had less inflammation as compared to the control group. Conclusion: It may be inferred that the ethanolic extract of the three herbs has strong anti-inflammatory activity in the tested inflammatory models and the extract is safe as it did not show any cytotoxic effects in both in vitro and in vivo conditions.

2.
J Appl Genet ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358594

RESUMEN

Head and neck squamous cell carcinoma (HNSC) is a diverse group of tumors arising from oral cavity, oropharynx, larynx, and hypopharynx squamous epithelium, posing significant morbidity. Aquaporins (AQPs) are membrane proteins forming water channels, some associated with carcinomas. Chromobox (CBX) family is known to modulate physiological and oncological processes. In our study, we analyzed AQPs and CBXs having significant expression followed by their prognostic and mutational assessment. Next, we performed enrichment and tumor infiltration analysis followed by HPA validation. Lastly, we established a 3-node miRNA-TF-mRNA regulatory network and performed protein-protein docking of the highest-degree subnetwork motif between TF and mRNA. Significant upregulation of CBX3/2 and downregulation of AQP3/5/7 correlated with poor overall survival (OS) in HNSC patients. The most significant pathway, GO-BP, GO-MF, and GO-CC terms associated with AQP3 and CBX3 were passive transport by aquaporins, response to vitamin, glycerol channel activity, and condensed chromosome, centromeric region. AQP3 negatively correlated with [Formula: see text] T cells, positively with [Formula: see text] T cells and B cells, and negatively with tumor purity, whereas CBX3 positively correlated with [Formula: see text] T cells, negatively with [Formula: see text] T cells and B cells, and positively with tumor purity. Three-node miRNA-TF-mRNA regulatory network revealed a highest-degree subnetwork motif comprising one TF (SMAD3), one miRNA (miR-423-5p), and one mRNA (AQP3). Protein-protein interaction studies suggested a direct interaction between AQP3 and Smad3 proteins. We concluded that AQP3 and CBX3 hold potential as treatment strategies and individual prognostic biomarkers, while further protein-protein interaction studies of AQP3 could offer insights into its interactions with Smad3 proteins.

3.
Int J Biol Macromol ; 253(Pt 8): 127378, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37839601

RESUMEN

Mechanisms of protein aggregation are of immense interest in therapeutic biology and neurodegenerative medicine. Biochemical processes within the living cell occur in a highly crowded environment. The phenomenon of macromolecular crowding affects the diffusional and conformational dynamics of proteins and modulates their folding. Macromolecular crowding is reported to cause protein aggregation in some cases, so it is a cause of concern as it leads to a plethora of neurodegenerative disorders and systemic amyloidosis. To divulge the mechanism of aggregation, it is imperative to study aggregation in well-characterized model proteins in the presence of macromolecular crowder. One such protein is ribonuclease A (RNase A), which deciphers neurotoxic function in humans; therefore we decided to explore the amyloid fibrillogenesis of this thermodynamically stable protein. To elucidate the impact of crowder, dextran-70 and its monomer glucose on the aggregation profile of RNase-A various techniques such as Absorbance, Fluorescence, Fourier Transforms Infrared, Dynamic Light Scattering and circular Dichroism spectroscopies along with imaging techniques like Atomic Force Microscopy and Transmission Electron Microscopy were employed. Thermal aggregation and fibrillation were further promoted by dextran-70 while glucose counteracted the effect of the crowding agent in a concentration-dependent manner. This study shows that glucose provides stability to the protein and prevents fibrillation. Intending to combat aggregation, which is the hallmark of numerous late-onset neurological disorders and systemic amyloidosis, this investigation unveils that naturally occurring osmolytes or other co-solutes can be further exploited in novel drug design strategies.


Asunto(s)
Amiloidosis , Azúcares , Humanos , Ribonucleasa Pancreática/química , Ribonucleasas/metabolismo , Agregado de Proteínas , Dextranos/química , Amiloide/química , Glucosa , Pliegue de Proteína , Dicroismo Circular
4.
OMICS ; 27(5): 227-236, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37155625

RESUMEN

Breast cancer (BC) is the second-most common type and among the leading causes of worldwide cancer-related deaths. There is marked person-to-person variability in susceptibility to, and phenotypic expression and prognosis of BC, a predicament that calls for personalized medicine and individually tailored therapeutics. In this study, we report new observations on prognostic hub genes and key pathways involved in BC. We used the data set GSE109169, comprising 25 pairs of BC and adjacent normal tissues. Using a high-throughput transcriptomic approach, we selected data on 293 differentially expressed genes to establish a weighted gene coexpression network. We identified three age-linked modules where the light-gray module strongly correlated with BC. Based on the gene significance and module membership features, peptidase inhibitor 15 (PI15) and KRT5 were identified as our hub genes from the light-gray module. These genes were further verified at transcriptional and translational levels across 25 pairs of BC and adjacent normal tissues. Their promoter methylation profiles were assessed based on various clinical parameters. In addition, these hub genes were used for Kaplan-Meier survival analysis, and their correlation with tumor-infiltrating immune cells was investigated. We found that PI15 and KRT5 may be potential biomarkers and potential drug targets. These findings call for future research in a larger sample size, which could inform diagnosis and clinical management of BC, thus paving the way toward personalized medicine.


Asunto(s)
Neoplasias de la Mama , Transcriptoma , Humanos , Femenino , Transcriptoma/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Pronóstico , Medicina de Precisión , Perfilación de la Expresión Génica
5.
Int J Biol Macromol ; 234: 123662, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796566

RESUMEN

The proper functioning of any protein depends on its three dimensional conformation which is achieved by the accurate folding mechanism. Keeping away from the exposed stress conditions leads to cooperative unfolding and sometimes partial folding, forming the structures like protofibrils, fibrils, aggregates, oligomers, etc. leading to several neurodegenerative diseases like Parkinson's disease, Alzheimer's, Cystic fibrosis, Huntington, Marfan syndrome, and also cancers in some cases, too. Hydration of proteins is necessary, which may be achieved by the presence of organic solutes called osmolytes within the cell. Osmolytes belong to different classes in different organisms and play their role by preferential exclusion of osmolytes and preferential hydration of water molecules and achieves the osmotic balance in the cell otherwise it may cause problems like cellular infection, cell shrinkage leading to apoptosis and cell swelling which is also the major injury to the cell. Osmolyte interacts with protein, nucleic acids, intrinsically disordered proteins by non-covalent forces. Stabilizing osmolytes increases the Gibbs free energy of the unfolded protein and decreases that of folded protein and vice versa with denaturants (urea and guanidinium hydrochloride). The efficacy of each osmolyte with the protein is determined by the calculation of m value which reflects its efficiency with protein. Hence osmolytes can be therapeutically considered and used in drugs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Agua/química , Soluciones , Conformación Molecular , Pliegue de Proteína , Termodinámica
6.
Mol Biol Rep ; 49(11): 10895-10904, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35941412

RESUMEN

Arsenic (As) is a global carcinogenic contaminant, and is one of the significant environmental constraints that limits the development and yield of crop plants. It is always tagged along with rice as rice takes up As and tends to accumulate it in grains. This amassment makes a way for As to get into the food chain that leads to unforeseen human health risks. Being viewed as parallel with toxicity, As in rice is an important global risk that calls for an urgent solution. WRKY Transcription Factors (TFs) seems to be promising in this area. The classical and substantial progress in the molecular mechanism of WRKY TFs, strengthened the understanding of innovative solutions for dealing with As in rice. Here, we review the potential of WRKY TFs under As stressed rice as a genetic solution and also provide insights into As and rice. Further, we develop an understanding of WRKY TF gene family and its regulation in rice. To date, studies on the role of WRKY TFs under As stressed rice are lacking. This area needs to be explored more so that this gene family can be utilized as an effective genetic tool that can break the As cycle to develop low or As free rice cultivar.


Asunto(s)
Arsénico , Oryza , Humanos , Oryza/genética , Oryza/metabolismo , Factores de Transcripción/metabolismo , Arsénico/toxicidad , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/genética , Filogenia
7.
Biophys J ; 120(23): 5196-5206, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34748763

RESUMEN

Mechanisms that regulate nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions and is activated by calmodulin (CaM) binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two NOS electron transfer domains in an FRET dye-labeled endothelial NOS reductase domain (eNOSr) and to understand how CaM affects the dynamics to regulate catalysis by shaping the spatial and temporal conformational behaviors of eNOSr. In addition, we developed and applied a new imaging approach capable of recording three-dimensional FRET efficiency versus time images to characterize the impact on dynamic conformal states of the eNOSr enzyme by the binding of CaM, which identifies clearly that CaM binding generates an extra new open state of eNOSr, resolving more detailed NOS conformational states and their fluctuation dynamics. We identified a new output state that has an extra open conformation that is only populated in the CaM-bound eNOSr. This may reveal the critical role of CaM in triggering NOS activity as it gives conformational flexibility for eNOSr to assume the electron transfer output FMN-heme state. Our results provide a dynamic link to recently reported EM static structure analyses and demonstrate a capable approach in probing and simultaneously analyzing all of the conformational states, their fluctuations, and the fluctuation dynamics for understanding the mechanism of NOS electron transfer, involving electron transfer among FAD, FMN, and heme domains, during nitric oxide synthesis.


Asunto(s)
Calmodulina , Óxido Nítrico Sintasa de Tipo III , Calmodulina/metabolismo , Transporte de Electrón , Hemo/metabolismo , Óxido Nítrico , Óxido Nítrico Sintasa , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo
8.
Biochim Biophys Acta Gen Subj ; 1865(11): 129995, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34455019

RESUMEN

BACKGROUND: PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW: PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS: A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE: Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Biofactors ; 46(6): 963-973, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32941697

RESUMEN

Cyclophosphamide (CP)-induced hepatotoxic manifestations are major concern for patients undergoing chemotherapy, which often limit its therapeutic utility. Nerolidol (NER) is a natural bioactive molecule having potent gonadoprotective, neuroprotective, and cardioprotective properties but has not been explored for its hepatoprotective effect and underlying mechanism. Therefore, in the current study hepatoprotective potential of nerolidol was studied in CP-induced hepatic oxidative stress, inflammation, apoptosis, and fibrosis via modulation of Nrf2, NF-κB p65, caspase-3, TGF-ß1, and associated biochemical status in Swiss albino mice. NER (200, 400 mg/kg, p.o) and fenofibrate (FF) 80 mg/kg, p.o. were administered from first to fourteenth day and CP was administered at the dose of 200 mg/kg, i.p on seventh day. On fifteenth day, animals were sacrificed and estimation of oxidative stress, inflammation, apoptosis, fibrosis, histopathology (H E and MT staining), and immunohistochemistry was performed in the liver tissue. Administration of NER effectively normalized the elevated level of hepatic injury markers (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), marker of oxidative stress that is, malondialdehyde, inflammatory cytokines (TNF-α, IL-6, IL-1ß, and IL-10), NF-κB p65, apoptotic marker (cleaved caspase 3) and increased the level of Nrf2 and antioxidant enzymes (superoxide dismutase, CAT, and glutathione). Treatment with NER further reduced the structural damage of hepatocytes and markers of hepatic fibrosis such as TGF-ß1, hyaluronic acid, 4-hydroxyproline and collagen-rich stained area, estimated by MT staining. Findings of the current study showed that nerolidol exhibited potent antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic potential and thus acted as hepatoprotective agent. Present study represents novel mechanism of nerolidol against CP-induced hepatotoxicity. However, further studies are needed to use nerolidol as an adjuvant in chemotherapeutically treated patients.


Asunto(s)
Caspasa 3/metabolismo , Ciclofosfamida/administración & dosificación , Inflamación/prevención & control , Hepatopatías/prevención & control , Factor 2 Relacionado con NF-E2/metabolismo , Sesquiterpenos/farmacología , Factor de Transcripción ReIA/metabolismo , Animales , Apoptosis , Modelos Animales de Enfermedad , Fibrosis , Hígado/efectos de los fármacos , Hepatopatías/patología , Masculino , Ratones , Transducción de Señal/efectos de los fármacos
10.
J Biol Chem ; 295(8): 2203-2211, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31914408

RESUMEN

Production of reactive oxygen species caused by dysregulated endothelial nitric-oxide synthase (eNOS) activity is linked to vascular dysfunction. eNOS is a major target protein of the primary calcium-sensing protein calmodulin. Calmodulin is often modified by the main biomarker of nitroxidative stress, 3-nitrotyrosine (nitroTyr). Despite nitroTyr being an abundant post-translational modification on calmodulin, the mechanistic role of this modification in altering calmodulin function and eNOS activation has not been investigated. Here, using genetic code expansion to site-specifically nitrate calmodulin at its two tyrosine residues, we assessed the effects of these alterations on calcium binding by calmodulin and on binding and activation of eNOS. We found that nitroTyr-calmodulin retains affinity for eNOS under resting physiological calcium concentrations. Results from in vitro eNOS assays with calmodulin nitrated at Tyr-99 revealed that this nitration reduces nitric-oxide production and increases eNOS decoupling compared with WT calmodulin. In contrast, calmodulin nitrated at Tyr-138 produced more nitric oxide and did so more efficiently than WT calmodulin. These results indicate that the nitroTyr post-translational modification, like tyrosine phosphorylation, can impact calmodulin sensitivity for calcium and reveal Tyr site-specific gain or loss of functions for calmodulin-induced eNOS activation.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tirosina/metabolismo , Animales , Bovinos , Extractos Celulares , Fluorescencia , Células HEK293 , Humanos , Interferometría , Nitrosación , Unión Proteica
11.
Exp Hematol ; 82: 24-32, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31987924

RESUMEN

Cyclophosphamide (CP) is one of the commonly used anticancer drugs, but its use is limited by myelotoxicity. Nerolidol (NER) is a lipophilic, bioactive sesquiterpene reported to have neuroprotective, cardioprotective, gastroprotective, and renal protective potential, but its myeloprotective potential is underexplored. This study was aimed at evaluating the myeloid-protective potential of NER in CP-induced myelotoxic mice. NER 200 and 400 mg/kg was given orally from the first to the 14th day. CP 200 mg/kg was administered intravenously on the seventh day. At the end of the study, mice were humanly killed, and blood and bone marrow were collected and stored for hematologic, biochemical and histopathologic estimations. Bone marrow analysis revealed reduced bone marrow cellularity, α-esterase activity, colony-forming unit granulocyte-macrophage (CFU-GM) levels, colony-forming unit erythroid (CFU-E) levels, and burst-forming unit-erythroid (BFU-E) levels. Hematologic findings revealed reduced peripheral blood count and granulocyte-colony stimulating factor (G-CSF) levels, whereas biochemical analysis revealed increased malondialdehyde (MDA), tumor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-1ß levels and reduced superoxide dismutase (SOD), catalase (CAT), and IL-10 levels. Histopathologic study further strengthened our findings. Treatment with NER significantly reversed the hematotoxic and myelotoxic aberrations and retained the structural integrity of bone marrow. Findings of the current study suggest that NER is a potential therapeutic molecule that can mitigate CP-induced hematotoxic and myelotoxic manifestations. However, more detailed studies are needed to explicate the mechanism underlying its protective effect.


Asunto(s)
Enfermedades de la Médula Ósea , Médula Ósea , Ciclofosfamida/efectos adversos , Citocinas/metabolismo , Células Precursoras Eritroides , Sesquiterpenos/farmacología , Animales , Médula Ósea/metabolismo , Médula Ósea/patología , Enfermedades de la Médula Ósea/inducido químicamente , Enfermedades de la Médula Ósea/tratamiento farmacológico , Enfermedades de la Médula Ósea/metabolismo , Enfermedades de la Médula Ósea/patología , Ciclofosfamida/farmacología , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/patología , Masculino , Ratones
12.
J Biol Chem ; 294(35): 12880-12891, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311859

RESUMEN

The enzyme soluble guanylyl cyclase (sGC) is a heterodimer composed of an α subunit and a heme-containing ß subunit. It participates in signaling by generating cGMP in response to nitric oxide (NO). Heme insertion into the ß1 subunit of sGC (sGCß) is critical for function, and heat shock protein 90 (HSP90) associates with heme-free sGCß (apo-sGCß) to drive its heme insertion. Here, we tested the accuracy and relevance of a modeled apo-sGCß-HSP90 complex by constructing sGCß variants predicted to have an impaired interaction with HSP90. Using site-directed mutagenesis, purified recombinant proteins, mammalian cell expression, and fluorescence approaches, we found that (i) three regions in apo-sGCß predicted by the model mediate direct complex formation with HSP90 both in vitro and in mammalian cells; (ii) such HSP90 complex formation directly correlates with the extent of heme insertion into apo-sGCß and with cyclase activity; and (iii) apo-sGCß mutants possessing an HSP90-binding defect instead bind to sGCα in cells and form inactive, heme-free sGC heterodimers. Our findings uncover the molecular features of the cellular apo-sGCß-HSP90 complex and reveal its dual importance in enabling heme insertion while preventing inactive heterodimer formation during sGC maturation.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Animales , Células COS , Bovinos , Células Cultivadas , Chlorocebus aethiops , Humanos
13.
Br J Pharmacol ; 176(2): 177-188, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30402946

RESUMEN

This review briefly summarizes what was known about NOS enzymology at the time of the Nobel Prize award in 1998 and then discusses from the author's perspective some of the advances in NOS enzymology over the subsequent 20 years, focused on five aspects: the maturation process of NOS enzymes and its regulation; the mechanism of NO synthesis; the redox roles played by the 6R-tetrahydrobiopterin cofactor; the role of protein conformational behaviour in enabling NOS electron transfer and its regulation by NOS structural elements and calmodulin, and the catalytic cycling pathways of NOS enzymes and their influence on NOS activity. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.


Asunto(s)
Óxido Nítrico Sintasa/metabolismo , Premio Nobel , Animales , Humanos
14.
J Biol Chem ; 293(37): 14557-14568, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30012884

RESUMEN

Cellular heme is thought to be distributed between a pool of sequestered heme that is tightly bound within hemeproteins and a labile heme pool required for signaling and transfer into proteins. A heme chaperone that can hold and allocate labile heme within cells has long been proposed but never been identified. Here, we show that the glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) fulfills this role by acting as an essential repository and allocator of bioavailable heme to downstream protein targets. We identified a conserved histidine in GAPDH that is needed for its robust heme binding both in vitro and in mammalian cells. Substitution of this histidine, and the consequent decreases in GAPDH heme binding, antagonized heme delivery to both cytosolic and nuclear hemeprotein targets, including inducible nitric-oxide synthase (iNOS) in murine macrophages and the nuclear transcription factor Hap1 in yeast, even though this GAPDH variant caused cellular levels of labile heme to rise dramatically. We conclude that by virtue of its heme-binding property, GAPDH binds and chaperones labile heme to create a heme pool that is bioavailable to downstream proteins. Our finding solves a fundamental question in cell biology and provides a new foundation for exploring heme homeostasis in health and disease.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Hemo/metabolismo , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Hemo/química , Humanos , Ratones , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Unión Proteica , Alineación de Secuencia
15.
J Biol Chem ; 293(12): 4545-4554, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29414777

RESUMEN

NO synthase (NOS) enzymes perform interdomain electron transfer reactions during catalysis that may rely on complementary charge interactions at domain-domain interfaces. Guided by our previous results and a computer-generated domain-docking model, we assessed the importance of cross-domain charge interactions in the FMN-to-heme electron transfer in neuronal NOS (nNOS). We reversed the charge of three residues (Glu-762, Glu-816, and Glu-819) that form an electronegative triad on the FMN domain and then individually reversed the charges of three electropositive residues (Lys-423, Lys-620, and Lys-660) on the oxygenase domain (NOSoxy), to potentially restore a cross-domain charge interaction with the triad, but in reversed polarity. Charge reversal of the triad completely eliminated heme reduction and NO synthesis in nNOS. These functions were partly restored by the charge reversal at oxygenase residue Lys-423, but not at Lys-620 or Lys-660. Full recovery of heme reduction was probably muted by an accompanying change in FMN midpoint potential that made electron transfer to the heme thermodynamically unfavorable. Our results provide direct evidence that cross-domain charge pairing is required for the FMN-to-heme electron transfer in nNOS. The unique ability of charge reversal at position 423 to rescue function indicates that it participates in an essential cross-domain charge interaction with the FMN domain triad. This supports our domain-docking model and suggests that it may depict a productive electron transfer complex formed during nNOS catalysis.


Asunto(s)
Electrones , Hemo/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Animales , Catálisis , Citocromos c/metabolismo , Transporte de Electrón , Mononucleótido de Flavina/metabolismo , Cinética , Modelos Moleculares , Mutación , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico Sintasa de Tipo I/genética , Oxidación-Reducción , Dominios Proteicos , Ratas
16.
J Biol Chem ; 292(16): 6753-6764, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28232486

RESUMEN

The signaling molecule nitric oxide (NO) is synthesized in animals by structurally related NO synthases (NOSs), which contain NADPH/FAD- and FMN-binding domains. During catalysis, NADPH-derived electrons transfer into FAD and then distribute into the FMN domain for further transfer to internal or external heme groups. Conformational freedom of the FMN domain is thought to be essential for the electron transfer (ET) reactions in NOSs. To directly examine this concept, we utilized a "Cys-lite" neuronal NOS flavoprotein domain and substituted Cys for two residues (Glu-816 and Arg-1229) forming a salt bridge between the NADPH/FAD and FMN domains in the conformationally closed structure to allow cross-domain disulfide bond formation or cross-linking by bismaleimides of various lengths. The disulfide bond cross-link caused a ≥95% loss of cytochrome c reductase activity that was reversible with DTT treatment, whereas graded cross-link lengthening gradually increased activity, thus defining the conformational constraints in the catalytic process. We used spectroscopic and stopped-flow techniques to further investigate how the changes in FMN domain conformational freedom impact the following: (i) the NADPH interaction; (ii) kinetics of electron loading (flavin reduction); (iii) stabilization of open versus closed conformational forms in two different flavin redox states; (iv) reactivity of the reduced FMN domain toward cytochrome c; (v) response to calmodulin binding; and (vi) the rates of interflavin ET and the FMN domain conformational dynamics. Together, our findings help explain how the spatial and temporal behaviors of the FMN domain impact catalysis by the NOS flavoprotein domain and how these behaviors are governed to enable electron flow through the enzyme.


Asunto(s)
Flavoproteínas/química , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Calmodulina/química , Catálisis , Reactivos de Enlaces Cruzados/química , Cisteína/química , Citocromos c/química , Disulfuros/química , Electrones , Flavinas/química , Concentración de Iones de Hidrógeno , Cinética , Maleimidas/química , Mutación , NADP/química , Óxido Nítrico/química , Oxidación-Reducción , Dominios Proteicos , Ratas , Espectrofotometría Ultravioleta , Compuestos de Sulfhidrilo/química
17.
FEBS J ; 283(24): 4491-4501, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27760279

RESUMEN

The nitric oxide synthases (NOS) catalyze a two-step oxidation of l-arginine (Arg) to generate NO. In the first step, O2 activation involves one electron being provided to the heme by an enzyme-bound 6R-tetrahydro-l-biopterin cofactor (H4 B), and the H4 B radical must be reduced back to H4 B in order for NOS to continue catalysis. Although an NADPH-derived electron is used to reduce the H4 B radical, how this occurs is unknown. We hypothesized that the NOS flavoprotein domain might reduce the H4 B radical by utilizing the NOS heme porphyrin as a conduit to deliver the electron. This model predicts that factors influencing NOS heme reduction should also influence the extent and rate of H4 B radical reduction in kind. To test this, we utilized single catalytic turnover and stop-freeze methods, along with electron paramagnetic resonance spectroscopy, to measure the rate and extent of reduction of the 5-methyl-H4 B radical formed in neuronal NOS (nNOS) during Arg hydroxylation. We used several nNOS variants that supported either a slower or faster than normal rate of ferric heme reduction. We found that the rates and extents of nNOS heme reduction correlated well with the rates and extents of 5-methyl-H4 B radical reduction among the various nNOS enzymes. This supports a model where the heme porphyrin transfers an electron from the NOS flavoprotein to the H4 B radical formed during catalysis, revealing that the heme plays a dual role in catalyzing O2 activation or electron transfer at distinct points in the reaction cycle.


Asunto(s)
Biopterinas/análogos & derivados , Electrones , Hemo/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Animales , Arginina/química , Arginina/metabolismo , Biocatálisis , Biopterinas/química , Biopterinas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Radicales Libres/química , Radicales Libres/metabolismo , Hemo/química , Cinética , Modelos Moleculares , Estructura Molecular , Mutación , Óxido Nítrico Sintasa de Tipo I/química , Óxido Nítrico Sintasa de Tipo I/genética , Oxidación-Reducción , Unión Proteica , Dominios Proteicos , Ratas
18.
J Biol Chem ; 291(44): 23047-23057, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27613870

RESUMEN

The activity of endothelial NO synthase (eNOS) is triggered by calmodulin (CaM) binding and is often further regulated by phosphorylation at several positions in the enzyme. Phosphorylation at Ser1179 occurs in response to diverse physiologic stimuli and increases the NO synthesis and cytochrome c reductase activities of eNOS, thereby enhancing its participation in biological signal cascades. Despite its importance, the mechanism by which Ser1179 phosphorylation increases eNOS activity is not understood. To address this, we used stopped-flow spectroscopy and computer modeling approaches to determine how the phosphomimetic mutation (S1179D) may impact electron flux through eNOS and the conformational behaviors of its reductase domain, both in the absence and presence of bound CaM. We found that S1179D substitution in CaM-free eNOS had multiple effects; it increased the rate of flavin reduction, altered the conformational equilibrium of the reductase domain, and increased the rate of its conformational transitions. We found these changes were equivalent in degree to those caused by CaM binding to wild-type eNOS, and the S1179D substitution together with CaM binding caused even greater changes in these parameters. The modeling indicated that the changes caused by the S1179D substitution, despite being restricted to the reductase domain, are sufficient to explain the stimulation of both the cytochrome c reductase and NO synthase activities of eNOS. This helps clarify how Ser1179 phosphorylation regulates eNOS and provides a foundation to compare its regulation by other phosphorylation events.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Bovinos , Citocromos c/metabolismo , Flavinas/química , Flavinas/metabolismo , Cinética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Conformación Proteica
19.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1199-205, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27130529

RESUMEN

The impairment of vasodilator nitric oxide (NO) production is well accepted as a typical marker of endothelial dysfunction in vascular diseases, including in the pathophysiology of pulmonary arterial hypertension (PAH), but the molecular mechanisms accounting for loss of NO production are unknown. We hypothesized that low NO production by pulmonary arterial endothelial cells in PAH is due to inactivation of NO synthase (eNOS) by aberrant phosphorylation of the protein. To test the hypothesis, we evaluated eNOS levels, dimerization, and phosphorylation in the vascular endothelial cells and lungs of patients with PAH compared with controls. In mechanistic studies, eNOS activity in endothelial cells in PAH lungs was found to be inhibited due to phosphorylation at T495. Evidence pointed to greater phosphorylation/activation of protein kinase C (PKC) α and its greater association with eNOS as the source of greater phosphorylation at T495. The presence of greater amounts of pT495-eNOS in plexiform lesions in lungs of patients with PAH confirmed the pathobiological mechanism in vivo. Transfection of the activating mutation of eNOS (T495A/S1177D) restored NO production in PAH cells. Pharmacological blockade of PKC activity by ß-blocker also restored NO formation by PAH cells, identifying one mechanism by which ß-blockers may benefit PAH and cardiovascular diseases through recovery of endothelial functions.


Asunto(s)
Células Endoteliales/enzimología , Hipertensión Pulmonar/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Procesamiento Proteico-Postraduccional , Adulto , Células Cultivadas , Femenino , Humanos , Hipertensión Pulmonar/patología , Pulmón/enzimología , Pulmón/patología , Masculino , Persona de Mediana Edad , Óxido Nítrico/biosíntesis , Fosforilación , Proteína Quinasa C/metabolismo
20.
J Inorg Biochem ; 158: 122-130, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27013266

RESUMEN

Nitric oxide synthases (NOSs) catalyze a two-step oxidation of l-arginine to form nitric oxide (NO) and l-citrulline. NOS contains a N-terminal oxygenase domain (NOSoxy) that is the site of NO synthesis, and a C-terminal reductase domain (NOSred) that binds nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), and flavin mononucleotide (FMN) and provides electrons to the NOSoxy heme during catalysis. The three NOS isoforms in mammals inducible NOS (iNOS), neuronal NOS (nNOS), and endothelial NOS (eNOS) share high structural similarity but differ in NO release rates and catalytic properties due to differences in enzyme kinetic parameters. These parameters must be balanced for NOS enzymes to release NO, rather than consume it in a competing, inherent NO dioxygenase reaction. To improve understanding, we drew on a global catalytic model and previous findings to design three NOS chimeras that may predominantly function as NO dioxygenases: iNOSoxy/nNOSred (Wild type (WT) chimera), V346I iNOSoxy/nNOSred (V346I chimera) and iNOSoxy/S1412D nNOSred (S1412D chimera). The WT and S1412D chimeras had higher NO release than the parent iNOS, while the V346I chimera exhibited much lower NO release, consistent with expectations. Measurements indicated that a greater NO dioxygenase activity was achieved, particularly in the V346I chimera, which dioxygenated an estimated two to four NO per NO that it released, while the other chimeras had nearly equivalent NO dioxygenase and NO release activities. Computer simulations of the global catalytic model using the measured kinetic parameters produced results that mimicked the measured outcomes, and this provided further insights on the catalytic behaviors of the chimeras and basis of their increased NO dioxygenase activities.


Asunto(s)
Óxido Nítrico Sintasa/metabolismo , Oxigenasas/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/metabolismo , Modelos Biológicos , Estructura Molecular , Óxido Nítrico Sintasa/química , Óxido Nítrico Sintasa/genética , Oxigenasas/química , Oxigenasas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...