Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1037, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310100

RESUMEN

Liver failure causes breakdown of the Blood CNS Barrier (BCB) leading to damages of the Central-Nervous-System (CNS), however the mechanisms whereby the liver influences BCB-integrity remain elusive. One possibility is that the liver secretes an as-yet to be identified molecule(s) that circulate in the serum to directly promote BCB-integrity. To study BCB-integrity, we developed light-sheet imaging for three-dimensional analysis. We show that liver- or muscle-specific knockout of Hfe2/Rgmc induces BCB-breakdown, leading to accumulation of toxic-blood-derived fibrinogen in the brain, lower cortical neuron numbers, and behavioral deficits in mice. Soluble HFE2 competes with its homologue RGMa for binding to Neogenin, thereby blocking RGMa-induced downregulation of PDGF-B and Claudin-5 in endothelial cells, triggering BCB-disruption. HFE2 administration in female mice with experimental autoimmune encephalomyelitis, a model for multiple sclerosis, prevented paralysis and immune cell infiltration by inhibiting RGMa-mediated BCB alteration. This study has implications for the pathogenesis and potential treatment of diseases associated with BCB-dysfunction.


Asunto(s)
Barrera Hematoencefálica , Encefalomielitis Autoinmune Experimental , Animales , Femenino , Ratones , Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Hígado/metabolismo , Músculos/metabolismo
2.
Commun Biol ; 7(1): 34, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182732

RESUMEN

SNARE-mediated vesicular transport is thought to play roles in photoreceptor glutamate exocytosis and photopigment delivery. However, the functions of Synaptosomal-associated protein (SNAP) isoforms in photoreceptors are unknown. Here, we revisit the expression of SNAP-23 and SNAP-25 and generate photoreceptor-specific knockout mice to investigate their roles. Although we find that SNAP-23 shows weak mRNA expression in photoreceptors, SNAP-23 removal does not affect retinal morphology or vision. SNAP-25 mRNA is developmentally regulated and undergoes mRNA trafficking to photoreceptor inner segments at postnatal day 9 (P9). SNAP-25 knockout photoreceptors develop normally until P9 but degenerate by P14 resulting in severe retinal thinning. Photoreceptor loss in SNAP-25 knockout mice is associated with abolished electroretinograms and vision loss. We find mistrafficked photopigments, enlarged synaptic vesicles, and abnormal synaptic ribbons which potentially underlie photoreceptor degeneration. Our results conclude that SNAP-25, but not SNAP-23, mediates photopigment delivery and synaptic functioning required for photoreceptor development, survival, and function.


Asunto(s)
Células Fotorreceptoras de Vertebrados , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteína 25 Asociada a Sinaptosomas , Animales , Ratones , Transporte Biológico , Citoesqueleto , Ácido Glutámico , Ratones Noqueados , ARN Mensajero , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/metabolismo
3.
Int J Dev Biol ; 67(2): 49-56, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37410671

RESUMEN

The gene KIAA0319-Like (KIAA0319L) is thought to confer susceptibility for developmental dyslexia. Dyslexia may be caused by alterations in neuronal migration, and in utero knockdown of KIAA0319L in rats indicated migration errors. However, studies carried out with KIAA0319L knockout mice did not reveal an altered neuronal migration phenotype. Gene knockout may activate compensatory mechanisms to buffer against genetic mutations during development. Here we assessed the role of KIAA0319L on migrating neurons in the chick developing tectum. Whole mount in situ hybridization was performed for KIAA0319L on embryonic day (E)3 - E5 chick embryos and in situ hybridization on sections was performed at later stages. The specificity and efficiency of engineered microRNA (miRNA) constructs targeting KIAA0319L for knocking down KIAA0319L were verified. miRNAs were electroporated into E5 chick optic tecta. Our studies demonstrate that KIAA0319L is expressed in the developing chick visual system, as well as in the otic vesicles. Knockdown of KIAA0319L in the optic tectum results in abnormal neuronal migration, strengthening the argument that KIAA0319L is involved in this developmental process.


Asunto(s)
Dislexia , Embrión de Pollo , Ratones , Animales , Ratas , Dislexia/genética , Neuronas/fisiología , Neurogénesis/fisiología , Ratones Noqueados
4.
iScience ; 26(5): 106664, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37168570

RESUMEN

SNARE-mediated membrane fusion plays a crucial role in presynaptic vesicle exocytosis and also in postsynaptic receptor delivery. The latter is considered particularly important for synaptic plasticity and learning and memory, yet the identity of the key SNARE proteins remains elusive. Here, we investigate the role of neuronal synaptosomal-associated protein-23 (SNAP-23) by analyzing pyramidal-neuron specific SNAP-23 conditional knockout (cKO) mice. Electrophysiological analysis of SNAP-23 deficient neurons using acute hippocampal slices showed normal basal neurotransmission in CA3-CA1 synapses with unchanged AMPA and NMDA currents. Nevertheless, we found theta-burst stimulation-induced long-term potentiation (LTP) was vastly diminished in SNAP-23 cKO slices. Moreover, unlike syntaxin-4 cKO mice where both basal neurotransmission and LTP decrease manifested changes in a broad set of behavioral tasks, deficits of SNAP-23 cKO are more limited to spatial memory. Our data reveal that neuronal SNAP-23 is selectively crucial for synaptic plasticity and spatial memory without affecting basal glutamate receptor function.

5.
Acta Biomater ; 161: 37-49, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36898472

RESUMEN

Retinitis pigmentosa (RP) is a group of genetic diseases that results in rod photoreceptor cell degeneration, which subsequently leads to cone photoreceptor cell death, impaired vision and eventual blindness. Rod-derived cone viability factor (RdCVF) is a protein which has two isoforms: a short form (RdCVF) and a long form (RdCVFL) which act on cone photoreceptors in the retina. RdCVFL protects photoreceptors by reducing hyperoxia in the retina; however, sustained delivery of RdCVFL remains challenging. We developed an affinity-controlled release strategy for RdCVFL. An injectable physical blend of hyaluronan and methylcellulose (HAMC) was covalently modified with a peptide binding partner of the Src homology 3 (SH3) domain. This domain was expressed as a fusion protein with RdCVFL, thereby enabling its controlled release from HAMC-binding peptide. Sustained release of RdCVFL was demonstrated for the first time as RdCVFL-SH3 from HAMC-binding peptide for 7 d in vitro. To assess bioactivity, chick retinal dissociates were harvested and treated with the affinity-released recombinant protein from the HAMC-binding peptide vehicle. After 6 d in culture, cone cell viability was greater when cultured with released RdCVFL-SH3 relative to controls. We utilized computational fluid dynamics to model release of RdCVFL-SH3 from our delivery vehicle in the vitreous of the human eye. We demonstrate that our delivery vehicle can prolong the bioavailability of RdCVFL-SH3 in the retina, potentially enhancing its therapeutic effects. Our affinity-based system constitutes a versatile delivery platform for ultimate intraocular injection in the treatment of retinal degenerative diseases. STATEMENT OF SIGNIFICANCE: Retinitis pigmentosa (RP) is the leading cause of inherited blindness in the world. Rod-derived cone viability factor (RdCVF), a novel protein paracrine factor, is effective in preclinical models of RP. To extend its therapeutic effects, we developed an affinity-controlled release strategy for the long form of RdCVF, RdCVFL. We expressed RdCVFL as a fusion protein with an Src homology 3 domain (SH3). We then utilized a hydrogel composed of hyaluronan and methylcellulose (HAMC) and modified it with SH3 binding peptides to investigate its release in vitro. Furthermore, we designed a mathematical model of the human eye to investigate delivery of the protein from the delivery vehicle. This work paves the way for future investigation of controlled release RdCVF.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Células Fotorreceptoras Retinianas Conos/metabolismo , Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/uso terapéutico , Ácido Hialurónico/metabolismo , Proteínas del Ojo/genética , Degeneración Retiniana/metabolismo , Metilcelulosa
6.
Dev Growth Differ ; 62(6): 391-397, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32279322

RESUMEN

Current models of axon guidance within the central nervous system (CNS) involve the presentation of environmental cues to navigating growth cones. The surrounding and target tissues present a variety of ligands that either restrict or promote growth, thus providing pathfinding instructions to developing axons. Recent findings show that RGMb, a GPI anchored extracellular protein present on retinal ganglion cells, down-regulates Wnt3a signaling by lowering LRP5 levels at the membrane surface. When RGMb is phosphorylated by the extracellular tyrosine kinase VLK, phosphorylated RGMb (p-RGMb) is internalized and carries LRP5 towards intracellular compartments. In the eye, a dorsal-high ventral-low gradient of VLK generates a dorsal-low ventral-high gradient of LRP5 that modulates Wnt3a signaling. These molecules, which are all expressed by individual RGCs, generate Wnt-signal gradients along the dorso-ventral axis of the retina, resulting in differential axon growth which in turn regulates proper retino-tectal/collicular map formation. This pathway represents a regulatory mechanism whereby extracellular phosphorylation generates what may be the first example of a unique self-guiding mechanism that affects neuronal-target connections independent of paracrine signals from the surrounding target tissue.


Asunto(s)
Orientación del Axón , Células Ganglionares de la Retina/metabolismo , Animales , Humanos , Fosforilación
7.
J Clin Invest ; 130(4): 2054-2068, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32175920

RESUMEN

Inherited retinal degenerations (IRDs) are characterized by the progressive loss of photoreceptors and represent one of the most prevalent causes of blindness among working-age populations. Cyclic nucleotide dysregulation is a common pathological feature linked to numerous forms of IRD, yet the precise mechanisms through which this contributes to photoreceptor death remain elusive. Here we demonstrate that cAMP induced upregulation of the dependence receptor neogenin in the retina. Neogenin levels were also elevated in both human and murine degenerating photoreceptors. We found that overexpressing neogenin in mouse photoreceptors was sufficient to induce cell death, whereas silencing neogenin in degenerating murine photoreceptors promoted survival, thus identifying a pro-death signal in IRDs. A possible treatment strategy is modeled whereby peptide neutralization of neogenin in Rd1, Rd10, and Rho P23H-knockin mice promotes rod and cone survival and rescues visual function as measured by light-evoked retinal ganglion cell recordings, scotopic/photopic electroretinogram recordings, and visual acuity tests. These results expose neogenin as a critical link between cAMP and photoreceptor death, and identify a druggable target for the treatment of retinal degeneration.


Asunto(s)
Proteínas de la Membrana/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/metabolismo , Animales , Línea Celular Tumoral , AMP Cíclico/genética , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Células Ganglionares de la Retina/patología
8.
Sci Rep ; 10(1): 709, 2020 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-31959797

RESUMEN

Recent evidence suggests that SNARE fusion machinery play critical roles in postsynaptic neurotransmitter receptor trafficking, which is essential for synaptic plasticity. However, the key SNAREs involved remain highly controversial; syntaxin-3 and syntaxin-4 are leading candidates for the syntaxin isoform underlying postsynaptic plasticity. In a previous study, we showed that pyramidal-neuron specific conditional knockout (cKO) of syntaxin-4 significantly reduces basal transmission, synaptic plasticity and impairs postsynaptic receptor trafficking. However, this does not exclude a role for syntaxin-3 in such processes. Here, we generated and analyzed syntaxin-3 cKO mice. Extracellular field recordings in hippocampal slices showed that syntaxin-3 cKO did not exhibit significant changes in CA1 basal neurotransmission or in paired-pulse ratios. Importantly, there were no observed differences during LTP in comparison to control mice. Syntaxin-3 cKO mice performed similarly as the controls in spatial and contextual learning tasks. Consistent with the minimal effects of syntaxin-3 cKO, syntaxin-3 mRNA level was very low in hippocampal and cortex pyramidal neurons, but strongly expressed in the corpus callosum and caudate axon fibers. Together, our data suggest that syntaxin-3 is dispensable for hippocampal basal neurotransmission and synaptic plasticity, and further supports the notion that syntaxin-4 is the major isoform mediating these processes.


Asunto(s)
Región CA1 Hipocampal/fisiología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Proteínas Qa-SNARE/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Animales , Región CA1 Hipocampal/metabolismo , Cuerpo Calloso/metabolismo , Expresión Génica , Técnicas In Vitro , Potenciación a Largo Plazo/fisiología , Ratones Noqueados , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , ARN Mensajero/metabolismo
9.
Front Cell Neurosci ; 13: 484, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824264

RESUMEN

Voa protein is a subunit of V-ATPase proton pump which is essential to acidify intracellular organelles including synaptic vesicles. Voa1 is one of the four isoforms of Voa family with strong expression in neurons. Our present study was aimed to examine the role of Voa1 protein in mammalian brain neurons. To circumvent embryonic lethality, we generated conditional Voa1 knockout mice in which Voa1 was selectively deleted from forebrain pyramidal neurons. We performed experiments in the Voa1 knockout mice of ages 5-6 months to assess the persistent effects of Voa1 deletion. We found that the Voa1 knockout mice exhibited poor performance in the Morris water maze test compared to control mice. In addition, synaptic field potentials of the hippocampal CA1 region were greatly diminished in the Voa1 knockout mice when examined in brain slices in vitro. Furthermore, brain histological experiments showed severe degeneration of dorsal hippocampal CA1 neurons while CA3 neurons were largely preserved. The CA1 neurodegeneration was associated with general brain atrophy as overall hemispheric areas were reduced in the Voa1 cKO mice. Despite the CA1 degeneration and dysfunction, electroencephalographic recordings from the hippocampal CA3 area revealed aberrant spikes and non-convulsive discharges in the Voa1 knockout mice but not in control mice. These hippocampal spikes were suppressed by single intra-peritoneal injection of diazepam which is a benzodiazepine GABAA receptor enhancer. Together these results suggest that Voa1 related activities are essential for the survival of the targeted neurons in the dorsal hippocampal CA1 as well as other forebrain areas. We postulate that the Voa1 knockout mice may serve as a valuable model for further investigation of V-ATPase dysfunction related neuronal degeneration and functional abnormalities in forebrain areas particularly the hippocampus.

10.
Nat Chem Biol ; 15(11): 1035-1042, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31451763

RESUMEN

Until recently, the existence of extracellular kinase activity was questioned. Many proteins of the central nervous system are targeted, but it remains unknown whether, or how, extracellular phosphorylation influences brain development. Here we show that the tyrosine kinase vertebrate lonesome kinase (VLK), which is secreted by projecting retinal ganglion cells, phosphorylates the extracellular protein repulsive guidance molecule b (RGMb) in a dorsal-ventral descending gradient. Silencing of VLK or RGMb causes aberrant axonal branching and severe axon misguidance in the chick optic tectum. Mice harboring RGMb with a point mutation in the phosphorylation site also display aberrant axonal pathfinding. Mechanistic analyses show that VLK-mediated RGMb phosphorylation modulates Wnt3a activity by regulating LRP5 protein gradients. Thus, the secretion of VLK by projecting neurons provides crucial signals for the accurate formation of nervous system circuitry. The dramatic effect of VLK on RGMb and Wnt3a signaling implies that extracellular phosphorylation likely has broad and profound effects on brain development, function and disease.


Asunto(s)
Orientación del Axón , Axones/metabolismo , Animales , Ratones , Proteínas del Tejido Nervioso/metabolismo , Fosforilación
11.
Cell Rep ; 23(10): 2955-2966, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874582

RESUMEN

Trafficking of neurotransmitter receptors on postsynaptic membranes is critical for basal neurotransmission and synaptic plasticity, yet the underlying mechanisms remain elusive. Here, we investigated the role of syntaxin 4 in postsynaptic hippocampal CA1 neurons by analyzing conditional knockout (syntaxin 4 cKO) mice. We show that syntaxin 4 cKO resulted in reduction of basal neurotransmission without changes in paired-pulse ratios. Both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptor-mediated charge transfers were diminished. Patch-clamp experiments revealed that amplitudes, but not frequencies, of spontaneous excitatory postsynaptic currents are reduced. Syntaxin 4 knockout (KO) caused drastic reduction in expression of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptors in cultured hippocampal neurons. Furthermore, cKO caused defects in theta-burst stimulation induced long-term potentiation and spatial learning as assessed by a water maze task, indicating that synaptic plasticity was altered. Our data reveal a crucial role of syntaxin 4 in trafficking of ionotropic glutamate receptors that are essential for basal neurotransmission, synaptic plasticity, and spatial memory.


Asunto(s)
Región CA1 Hipocampal/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Proteínas Qa-SNARE/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Animales , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Eliminación de Gen , Potenciación a Largo Plazo/fisiología , Ratones Noqueados , Especificidad de Órganos , Receptores AMPA/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Memoria Espacial
12.
Methods Mol Biol ; 1650: 167-176, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28809020

RESUMEN

To elucidate a gene function, in vivo analysis is indispensable. We can carry out gain and loss of function experiment of a gene of interest by electroporation in ovo and ex ovo culture system on early-stage and advanced-stage chick embryos, respectively. In this section, we introduce in/ex ovo electroporation methods for the development of the chick central nervous system and visual system investigation.


Asunto(s)
Sistema Nervioso Central/metabolismo , Embrión de Pollo , Pollos/genética , Electroporación/métodos , Técnicas de Transferencia de Gen , Animales , Sistema Nervioso Central/embriología , Elementos Transponibles de ADN , Vías Visuales/embriología , Vías Visuales/metabolismo
13.
Cell Rep ; 20(1): 99-111, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683327

RESUMEN

Developing strategies that promote axonal regeneration within the injured CNS is a major therapeutic challenge, as axonal outgrowth is potently inhibited by myelin and the glial scar. Although regeneration can be achieved using the genetic deletion of PTEN, a negative regulator of the mTOR pathway, this requires inactivation prior to nerve injury, thus precluding therapeutic application. Here, we show that, remarkably, fibroblast-derived exosomes (FD exosomes) enable neurite growth on CNS inhibitory proteins. Moreover, we demonstrate that, upon treatment with FD exosomes, Wnt10b is recruited toward lipid rafts and activates mTOR via GSK3ß and TSC2. Application of FD exosomes shortly after optic nerve injury promoted robust axonal regeneration, which was strongly reduced in Wnt10b-deleted animals. This work uncovers an intercellular signaling pathway whereby FD exosomes mobilize an autocrine Wnt10b-mTOR pathway, thereby awakening the intrinsic capacity of neurons for regeneration, an important step toward healing the injured CNS.


Asunto(s)
Comunicación Autocrina , Axones/metabolismo , Exosomas/metabolismo , Regeneración Nerviosa , Traumatismos del Nervio Óptico/metabolismo , Proteínas Wnt/metabolismo , Animales , Axones/fisiología , Células COS , Células Cultivadas , Chlorocebus aethiops , Fibroblastos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Humanos , Microdominios de Membrana/metabolismo , Ratones , Nervio Óptico/metabolismo , Nervio Óptico/fisiología , Células PC12 , Ratas , Serina-Treonina Quinasas TOR/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/genética
14.
Dev Growth Differ ; 58(5): 437-45, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27273073

RESUMEN

In this paper, we review how midbrain and hindbrain are specified. Otx2 and Gbx2 are expressed from the early phase of development, and their expression abuts at the midbrain hindbrain boundary (MHB), where Fgf8 expression is induced, and functions as an organizing molecule for the midbrain and hindbrain. Fgf8 induces En1 and Pax2 expression at the region where Otx2 is expressed to specify midbrain. Fgf8 activates Ras-ERK pathway to specify hindbrain. Downstream of ERK, Pea3 specifies isthmus (rhombomere 0, r0), and Irx2 may specify r1, where the cerebellum is formed.


Asunto(s)
Factor 8 de Crecimiento de Fibroblastos/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Mesencéfalo/embriología , Rombencéfalo/embriología , Animales , Factor 8 de Crecimiento de Fibroblastos/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo
15.
Dev Growth Differ ; 57(9): 657-66, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26691276

RESUMEN

It has been shown that strong Fgf8 signal activates Ras-ERK signaling pathway to determine metencephalon, which consists of rhombomere 1 (r1), where the cerebellum differentiates, and isthmus (r0). The present study was undertaken to check if Ets type transcription factor Pea3 functions downstream of Ras-ERK signaling to determine metencephalon. Pea3 misexpression resulted in repression of Otx2 expression in the mesencephalon, induction of Gbx2 and Fgf8 expression in the mesencephalon, and differentiation of the trochlear neurons in the posterior mesencephalon. Fate change of the tectum to the cerebellum did not occur. Repression of Pea3 function by misexpressing the chimeric molecule of Engrailed repressor domain EH1 and Pea3 (eh1-Pea3) resulted in induction of Otx2 expression in the metencephalon, repression of Gbx2 and Fgf8 expression in the metencephalon, and differentiation of the oculomotor neurons in the isthmus. It was concluded that Pea3 plays a pivotal role in determination of the isthmus (r0) property downstream of Fgf8-Ras-ERK signaling.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Sistema de Señalización de MAP Quinasas , Factores de Transcripción/metabolismo , Proteínas ras/metabolismo , Animales , Pollos , Regulación hacia Abajo , Regulación hacia Arriba
16.
Development ; 141(10): 2131-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24803658

RESUMEN

The chick optic tectum consists of 16 laminae. Here, we report contribution of En2 to laminar formation in chick optic tecta. En2 is specifically expressed in laminae g-j of stratum griseum et fibrosum superficiale (SGFS). Misexpression of En2 resulted in disappearance of En2-expressing cells from the superficial layers (laminae a-f of SGFS), where endogenous En2 is not expressed. Misexpression of En2 before postmitotic cells had left the ventricular layer indicated that En2-misexpressing cells stopped at the laminae of endogenous En2 expression and that they did not migrate into the superficial layers. Induction of En2 misexpression using a tetracycline-inducible system after the postmitotic cells had reached superficial layers also resulted in disappearance of En2-expressing cells from the superficial layers. Time-lapse analysis showed that En2-misexpressing cells migrated back from the superficial layers towards the middle layers, where En2 is strongly expressed endogenously. Our results suggest a potential role of En2 in regulating cell migration and positioning in the tectal laminar formation.


Asunto(s)
Proteínas de Homeodominio/fisiología , Proteínas del Tejido Nervioso/fisiología , Lóbulo Óptico de Animales no Mamíferos/embriología , Techo del Mesencéfalo/embriología , Animales , Animales Modificados Genéticamente , Movimiento Celular/genética , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Neuronas/citología , Neuronas/fisiología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Retina/embriología , Retina/metabolismo , Techo del Mesencéfalo/metabolismo
17.
PLoS Biol ; 10(10): e1001415, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118616

RESUMEN

The endogenous mechanism that determines vertebrate body length is unknown but must involve loss of chordo-neural-hinge (CNH)/axial stem cells and mesoderm progenitors in the tailbud. In early embryos, Fibroblast growth factor (FGF) maintains a cell pool that progressively generates the body and differentiation onset is driven by retinoid repression of FGF signalling. This raises the possibility that FGF maintains key tailbud cell populations and that rising retinoid activity underlies cessation of body axis elongation. Here we show that sudden loss of the mesodermal gene (Brachyury) from CNH and the mesoderm progenitor domain correlates with FGF signalling decline in the late chick tailbud. This is accompanied by expansion of neural gene expression and a similar change in cell fate markers is apparent in the human tailbud. Fate mapping of chick tailbud further revealed that spread of neural gene expression results from continued ingression of CNH-derived cells into the position of the mesoderm progenitor domain. Using gain and loss of function approaches in vitro and in vivo, we then show that attenuation of FGF/Erk signalling mediates this loss of Brachyury upstream of Wnt signalling, while high-level FGF maintains Brachyury and can induce ectopic CNH-like cell foci. We further demonstrate a rise in endogenous retinoid signalling in the tailbud and show that here FGF no longer opposes retinoid synthesis and activity. Furthermore, reduction of retinoid signalling at late stages elevated FGF activity and ectopically maintained mesodermal gene expression, implicating endogenous retinoid signalling in loss of mesoderm identity. Finally, axis termination is concluded by local cell death, which is reduced by blocking retinoid signalling, but involves an FGFR-independent mechanism. We propose that cessation of body elongation involves loss of FGF-dependent mesoderm identity in late stage tailbud and provide evidence that rising endogenous retinoid activity mediates this step and ultimately promotes cell death in chick tailbud.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Mesodermo/citología , Retinoides/metabolismo , Transducción de Señal , Animales , Tipificación del Cuerpo , Embrión de Pollo , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
18.
Dev Growth Differ ; 54(4): 463-73, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22404534

RESUMEN

Fibroblast growth factor 8 (FGF8) functions as a local organizing signal for the tectum and cerebellum. FGF8 activates Ras-ERK signaling pathway to induce cerebellar development. We paid attention to the difference in the expression pattern of the molecules that are induced by FGF8 in the mid-hind brain region during normal development and after FGF8 misexpression; some are expressed in the area corresponding to the ERK activation domain but the others are expressed corresponding to the Fgf8 expression domain. Since some of the FGF family members are localized in the nucleus, we wondered if FGF8 could localize in the nuclei and function in the nucleus. We first show that in cultured NIH3T3 cells transfected FGF8b could localize in the nucleus. Transfected FGF8b could also localize in the nucleus of the cells in the chick neural tube. In mouse embryonic neural tube, we detected endogenous FGF8 in the nuclei. Implantation of an FGF8b-soaked bead showed that exogenous FGF8b could be translocated to the nuclei in the isthmus. Furthermore, signal-peptide-deletion mutant of FGF8b mainly localized in the nuclei, and induced Sprouty2 without activating ERK in the mesencephalon. Signal-peptide-deletion mutant of FGF8b could not induce Pax2 expression. Taken together, we concluded that FGF8b could be translocated to the nuclei, and that the nuclear FGF8 could function as transcriptional regulator to induce Sprouty2 in the isthmus.


Asunto(s)
Núcleo Celular/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales , Animales , Núcleo Celular/genética , Embrión de Pollo , Electroporación , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Desarrollo Embrionario , Femenino , Factor 8 de Crecimiento de Fibroblastos/genética , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/genética , Mesencéfalo/citología , Mesencéfalo/embriología , Metencéfalo/citología , Metencéfalo/embriología , Ratones , Ratones Endogámicos ICR , Microscopía Confocal , Células 3T3 NIH , Tubo Neural/citología , Tubo Neural/embriología , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Transfección
19.
PLoS One ; 7(12): e51581, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284718

RESUMEN

Heterogeneous classes of neurons are present in the spinal cord and are essential for its function. Expression patterns of transcription factors in neural progenitor cells determine neuron subtypes during development. Nkx2.2 is expressed in the progenitor cell pool located just ventrally to the Olig2-positive pool and is indispensable for V3 interneuron generation in the spinal cord and also for visceral motoneuron generation in the hindbrain. However, whether Nkx2.2-positive progenitor cells generate diverse classes of neuron is not fully understood. Using a chick lineage tracing method in a genetically-defined manner, we found that Nkx2.2-expressing progenitor cells differentiate into general visceral motoneurons as well as sim1-positive V3 interneurons. Surprisingly, we further observed that Nkx2.2-expressing progenitors differentiate into somatic motoneuron. Our findings suggest that the different classes of motoneurons are derived from more complex sources than were previously expected in the chick spinal cord.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Interneuronas/citología , Neuronas Motoras/citología , Médula Espinal/citología , Células Madre/citología , Factores de Transcripción/metabolismo , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Diferenciación Celular , Linaje de la Célula , Embrión de Pollo , Proteína Homeobox Nkx-2.2 , Técnicas para Inmunoenzimas , Hibridación in Situ , Integrasas/metabolismo , Interneuronas/metabolismo , Ratones , Neuronas Motoras/metabolismo , Retroviridae/genética , Médula Espinal/metabolismo , Células Madre/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Proteínas de Pez Cebra
20.
J Comp Neurol ; 519(13): 2615-21, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21491425

RESUMEN

The optic tectum is a visual center of nonmammalian vertebrates that receives retinal fibers in a retinotopic manner. It has been accepted that retinal fibers project to some superficial laminae of the tectum, but do not go through lamina g of stratum griseum et fibrosum superficiale (SGFS). By a novel fiber-tracing method, we found a novel pathway of retinal fibers that run through deep laminae of the tectum. The retinal fibers that would run through the newly identified pathway first run caudally along the medial edge after invading the tectum, turn laterally, and extend toward the lateral side through the deep pathway. The deep pathway runs through stratum album centrale and stratum fibrosum periventriculare. The fibers that run through the deep pathway do not enter the stratum opticum, where the conventional retinal fibers run. As development proceeds, these fibers decrease and disappear by the adult stage. By the new method, we found that some of the conventional retinal fibers transiently run through lamina g of SGFS and invade laminae h/i. In conclusion, we found distinct but transient retinal fiber pathway in the deep tectal laminae, which have not been thought to be retinorecipient.


Asunto(s)
Vías Aferentes/anatomía & histología , Retina/anatomía & histología , Colículos Superiores/anatomía & histología , Vías Aferentes/metabolismo , Animales , Embrión de Pollo , Retina/metabolismo , Coloración y Etiquetado/métodos , Colículos Superiores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...