Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 726: 150289, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38917633

RESUMEN

Among the various RNA modifications, adenosine-to-inosine RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) family, ADAR1 and ADAR2, is the most common nucleotide conversion in mammalian cells. The pathological relevance of ADAR expression has been highlighted in recent human genetic studies. Low expression of the ADAR2 gene is correlated with a poor prognosis in breast cancer patients, but the underlying mechanism remains enigmatic. In this study, we constructed Adar2-knockdown (Adar2-KD) murine breast cancer 4T1 cells and observed their reduced susceptibility to chemotherapeutic drug doxorubicin. Downregulation of ADAR2 induced the expression of P-glycoprotein (P-gp), leading to a reduction in the intracellular accumulation of doxorubicin. The upregulation of P-gp occurred at the post-transcriptional level due to the decreased miR-195a-3p function. The search for the underlying cause of the induction of P-gp expression in Adar2-KD 4T1 cells led to the identification of circular RNA (circRNA) circHif1a as a sponge for miR-195a-3p. The enhanced expression of circHif1a inhibited miR-195a-3p function, resulting in the upregulation of P-gp expression. These results suggest that ADAR2 acts as a suppressor of circHif1a biogenesis and then allows miR-195a-3p to interfere with P-gp translation. Our findings may help to improve drug efficacy by clarifying the mechanism of chemoresistance in breast cancer.

2.
J Biol Chem ; 298(8): 102184, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35753353

RESUMEN

Multidrug resistance-associated protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is highly expressed in the kidneys of mammals and is responsible for renal elimination of numerous drugs. Adenosine deaminase acting on RNA 1 (ADAR1) has been reported to regulate gene expression by catalyzing adenosine-to-inosine RNA editing reactions; however, potential roles of ADAR1 in the regulation of MRP4 expression have not been investigated. In this study, we found that downregulation of ADAR1 increased the expression of MRP4 in human renal cells at the posttranscriptional level. Luciferase reporter assays and microarray analysis revealed that downregulation of ADAR1 reduced the levels of microRNA miR-381-3p, which led to the corresponding upregulation of MPR4 expression. Circular RNAs (circRNAs) are a type of closed-loop endogenous noncoding RNAs that play an essential role in gene expression by acting as miRNA sponges. We demonstrate that ADAR1 repressed the biogenesis of circRNA circHIPK3 through its adenosine-to-inosine RNA editing activity, which altered the secondary structure of the precursor of circHIPK3. Furthermore, in silico analysis suggested that circHIPK3 acts as a sponge of miR-381-3p. Indeed, we found overexpression of circHIPK3 induced the expression of MRP4 through its interference with miR-381-3p. Taken together, our study provides novel insights into regulation of the expression of xenobiotic transporters through circRNA expression by the RNA editing enzyme ADAR1.


Asunto(s)
Adenosina Desaminasa/metabolismo , MicroARNs , Edición de ARN , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Adenosina Desaminasa/genética , Resistencia a Múltiples Medicamentos , Humanos , Inosina/genética , Riñón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , ARN Circular/genética , Proteínas de Unión al ARN/genética
3.
Biomed Res ; 42(5): 161-171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34544992

RESUMEN

Modeling, the changes of bone size and shape, often takes place at the developmental stages, whereas bone remodeling-replacing old bone with new bone-predominantly occurs in adults. Unlike bone remodeling, bone formation induced by modeling i.e., minimodeling (microscopic modeling in cancellous bone) is independent of osteoclastic bone resorption. Although recently-developed drugs for osteoporotic treatment could induce minimodeling-based bone formation in addition to remodeling-based bone formation, few reports have demonstrated the histological aspects of minimodeling-based bone formation. After administration of eldecalcitol or romosozumab, unlike teriparatide treatment, mature osteoblasts formed new bone by minimodeling, without developing thick preosteoblastic layers. The histological characteristics of minimodeling-based bone formation is quite different from remodeling, as it is not related to osteoclastic bone resorption, resulting in convex-shaped new bone and smooth cement lines called arrest lines. In this review, we will show histological properties of minimodeling-based bone formation by osteoporotic drugs.


Asunto(s)
Osteogénesis , Preparaciones Farmacéuticas , Remodelación Ósea , Huesos , Osteoblastos
4.
Biomed Res ; 42(4): 139-151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34380922

RESUMEN

It remains unknown whether the histology of vascular invasion during secondary ossification of epiphyseal cartilage is the same as that seen in primary ossification; we examined the initial processes of vascular invasion of secondary ossification in the murine femora. Many endomucin-immunoreactive blood vessels gathered at the central region of the articular surface, and buds of soft tissue, including glomerular loops of endomucin-immunoreactive blood vessels and TNALPase- immunopositive osteoblastic cells accompanied by TRAP-positive osteoclasts, had begun to invade the epiphyseal cartilage. The invading soft tissues formed cartilage canals displaying MMP9 immunoreactivity in the tip region, and cartilaginous collagen fibrils were not visible in the vicinity of the vascular wall of the blood vessels. Thus, the histological profile marked by invading glomerular vasculature and the erosion of the cartilage matrix near the vascular walls during secondary ossification differs from that seen during primary ossification.


Asunto(s)
Placa de Crecimiento , Osteogénesis , Animales , Cartílago , Fémur , Ratones , Osteoclastos
5.
J Oral Biosci ; 63(3): 259-264, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34391947

RESUMEN

OBJECTIVE: This study aimed to demonstrate the immunolocalization and gene expression of tissue nonspecific alkaline phosphatase (TNALP) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) in osteoblasts, preosteoblasts, and osteocytes of murine bone to provide clues for a better understanding of the supply of phosphate ions (Pi) during bone mineralization. METHODS: Six-week-old male C57BL/6J mice (n = 6) were fixed with a paraformaldehyde solution, and the right femora were extracted for immunodetection of TNALP and ENPP1, while the left tibiae were used for reverse transcription polymerase chain reaction to evaluate Tnalp and Enpp1 gene expression. RESULTS: TNALP was intensely localized on the basolateral cell membranes of mature osteoblasts and preosteoblastic cells. There was little immunoreactivity of TNALP on the secretory surface of the osteoblasts and no TNALP reactivity in the osteocytes. In contrast, ENPP1 was observed throughout the cytoplasm of mature osteoblasts and osteocytes embedded in bone but was not observed in preosteoblasts. Together, despite the fact that the osteoid is a site of matrix vesicle-mediated mineralization, ENPP1, which inhibits mineralization by providing pyrophosphates, was localized in close proximity of the osteoid, whereas TNALP, which facilitates mineralization by providing Pi, was relatively distant from the osteoid. CONCLUSION: It seems likely that the differential localization of TNALP and ENPP1 around the osteoid observed at the microscopic level may provide preferential micro-circumstance for a balanced concentration of Pi and pyrophosphate for bone mineralization.


Asunto(s)
Fosfatasa Alcalina , Pirofosfatasas , Fosfatasa Alcalina/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Osteocitos , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética
6.
Calcif Tissue Int ; 108(3): 391-406, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33170307

RESUMEN

To verify whether PTH acts on bone-specific blood vessels and on cells surrounding these blood vessels, 6-week-old male mice were subjected to vehicle (control group) or hPTH [1-34] (20 µg/kg/day, PTH group) injections for 2 weeks. Femoral metaphyses were used for histochemical and immunohistochemical studies. In control metaphyses, endomucin-positive blood vessels were abundant, but αSMA-reactive blood vessels were scarce. In the PTH-administered mice, the lumen of endomucin-positive blood vessels was markedly enlarged. Moreover, many αSMA-positive cells were evident near the blood vessels, and seemed to derive from those vessels. These αSMA-positive cells neighboring the blood vessels showed features of mesenchymal stromal cells, such as immunopositivity for c-kit and tissue nonspecific alkaline phosphatase (TNALP). Thus, PTH administration increased the population of perivascular/stromal cells positive for αSMA and c-kit, which were likely committed to the osteoblastic lineage. To understand the cellular events that led to increased numbers and size of bone-specific blood vessels, we performed immunohistochemical studies for PTH/PTHrP receptor and VEGF. After PTH administration, PTH/PTHrP receptor, VEGF and its receptor flk-1 were consistently identified in both osteoblasts and blood vessels (endothelial cells and surrounding perivascular cells). Our findings suggest that exogenous PTH increases the number and size of bone-specific blood vessels while fostering perivascular/stromal cells positive for αSMA/TNALP/c-kit.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Huesos , Hormona Paratiroidea/administración & dosificación , Células del Estroma/citología , Fosfatasa Alcalina/metabolismo , Animales , Huesos/irrigación sanguínea , Masculino , Ratones , Osteoblastos , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
7.
Biomed Res ; 40(4): 133-143, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31413234

RESUMEN

In this study, we attempted to localize the immunoreactivities of podoplanin/E11/gp38 and CD44, a counterpart possessing a high affinity to podoplanin/E11/gp38, as well as endomucin-immunoreactive blood vessels in the regions of odontoblast layers and the underlying sub-odontoblastic layers in murine tooth germs. Endomucin-reactive small blood vessels were scattered throughout the dental papillae of the tooth germs at postnatal day 1 but came to be localized close to the odontoblast/sub-odontoblastic layers until day 3. After postnatal day 5, small blood vessels were seen in odontoblast cell layers, while blood vessels with relatively larger diameters were seen forming in sub-odontoblastic layers. Immunoreactivities of podoplanin/E11/gp38 and CD44 were not detectable in the cells of dental papillae facing the inner enamel epithelium at postnatal day 1. However, at around postnatal days 3-5, podoplanin/E11/gp38 was localized in the odontoblast layer but not in the sub-odontoblastic layer, whereas CD44 was observed in the sub-odontoblastic layer but not in the odontoblast layer. The exclusive immunolocalization of podoplanin/E11/gp38 and CD44 in the odontoblast layers and sub-odontoblastic layers was seen after postnatal day 3 of the tooth germs, when the mesenchymal cells of dental papillae have already differentiated into mature odontoblasts at the cusp tip. Taken together, it seems likely that endomucin-reactive small blood vessels extended to the podoplanin/E11/gp38-positive odontoblast layers, whereas endomucin-reactive large blood vessels were already present in CD44-immmunopositive sub-odontoblastic layer, indicating the cellular regulation on the vascularization of endomucin-reactive endothelial cells during odontogenesis of the tooth germs.


Asunto(s)
Receptores de Hialuranos/biosíntesis , Glicoproteínas de Membrana/biosíntesis , Odontoblastos/metabolismo , Odontogénesis/fisiología , Sialoglicoproteínas/biosíntesis , Germen Dentario/crecimiento & desarrollo , Animales , Inmunohistoquímica , Ratones , Odontoblastos/citología , Germen Dentario/irrigación sanguínea , Germen Dentario/citología
8.
J Histochem Cytochem ; 65(4): 207-221, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28122194

RESUMEN

To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho-/- mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho-/-norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho-/- lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling.


Asunto(s)
Glucuronidasa/metabolismo , Periodoncio/metabolismo , Fosfatos/deficiencia , Animales , Dieta , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Glucuronidasa/genética , Histocitoquímica , Proteínas Klotho , Masculino , Mandíbula/metabolismo , Ratones , Ratones Mutantes , Mutación Missense , Ligamento Periodontal/metabolismo , Fosfatos/administración & dosificación , Fosfatos/sangre
9.
Endocrinology ; 157(7): 2604-20, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27227535

RESUMEN

Evidence supports that daily and once-weekly administration of teriparatide, human (h)PTH(1-34), enhance bone mass in osteoporotic patients. However, it is uncertain whether different frequencies of hPTH(1-34) administration would induce bone formation similarly in terms of quantity and quality. To investigate that issue, mice were subjected to different frequencies of PTH administration, and their bones were histologically examined. Frequencies of administration were 1 time/2 days, 1 time a day, and 2 and 4 times a day. Mice were allocated to either to control or to 3 different dosing regimens: 80 µg/kg of hPTH(1-34) per injection (80 µg/kg per dose), 80 µg/kg of hPTH(1-34) per day (80 µg/kg · d), or 20 µg/kg of hPTH(1-34) per day (20 µg/kg · d). With the regimens of 80 µg/kg per dose and 80 µg/kg · d, high-frequency hPTH(1-34) administration increased metaphyseal trabecular number. However, 4 doses per day induced the formation of thin trabeculae, whereas the daily PTH regimen resulted in thicker trabeculae. A similar pattern was observed with the lower daily hPTH(1-34) dose (20 µg/kg · d): more frequent PTH administration led to the formation of thin trabeculae, showing a thick preosteoblastic cell layer, several osteoclasts, and scalloped cement lines that indicated accelerated bone remodeling. On the other hand, low-frequency PTH administration induced new bone with mature osteoblasts lying on mildly convex surfaces representative of arrest lines, which suggests minimodeling-based bone formation. Thus, high-frequency PTH administration seems to increase bone mass rapidly by forming thin trabeculae through accelerated bone remodeling. Alternatively, low-frequency PTH administration leads to the formation of thicker trabeculae through bone remodeling and minimodeling.


Asunto(s)
Conservadores de la Densidad Ósea/administración & dosificación , Densidad Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Teriparatido/administración & dosificación , Animales , Esquema de Medicación , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Masculino , Ratones , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Tibia/diagnóstico por imagen , Tibia/efectos de los fármacos , Microtomografía por Rayos X
10.
Biomed Res ; 37(2): 141-51, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27108883

RESUMEN

We employed a well-standardized murine rib fracture model to assess the distribution, in the cortical bone, of three important osteocyte-derived molecules-dentine matrix protein 1 (DMP1), sclerostin and fibroblast growth factor 23 (FGF 23). Two days after the fracture, the periosteum thickened, and up to the seventh day post-fracture, the cortical surfaces were promoting neoformation of two tissue types depending on the distance from the fracture site: chondrogenesis was taking place near the fracture, and osteogenesis distant from it. The cortical bones supporting chondrogenesis featured several empty lacunae, while in the ones underlying newly-formed woven bone, empty lacunae were hardly seen. DMP1-immunopositive osteocytic lacunae and canaliculi were seen both close and away from the fracture. In contrast, the region close to the fracture had only few sclerostin- and FGF23-immunoreactive osteocytes, whereas the distant region revealed many osteocytes immunopositive for these markers. Mature cortical bone encompassing the native cortical bone was observed at two-, three- and four-weeks post-fracture, and the distribution of DMP1, sclerostin and FGF23 appeared to have returned to normal. In summary, early stages of fracture healing seem to be important for triggering chondrogenesis and osteogenesis that may be regulated by osteocytes via their secretory molecules.


Asunto(s)
Curación de Fractura/fisiología , Osteocitos/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Biomarcadores , Condrogénesis , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Glicoproteínas/metabolismo , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Osteogénesis , Transporte de Proteínas , Costillas , Factores de Tiempo
11.
Histol Histopathol ; 31(12): 1315-26, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26984199

RESUMEN

In order to provide a clue to understand the interplay between leptin and estrogen, we have examined femoral metaphyses of ovariectomized db/db mice carrying a mutated leptin receptor. We performed ovariectomy (OVX) or sham-operation (sham) on 12-week old female wild-type and db/db mice, and then, after 8 weeks, divided the animals into four groups: wild-type sham, wild-type OVX, db/db sham and db/db OVX. Samples from all groups were prepared for histochemical and ultrastructural examinations. As a result, db/db sham mice showed a reduced number and thickness of metaphyseal trabeculae and excessive adipose tissue when compared to wild-type sham mice. The wild-type OVX group exhibited markedly diminished trabecular number, as well as lower populations of osteoblasts and osteoclasts in comparison to wild-type sham group. On the other hand, trabecular numbers were similar for the two db/db groups, suggesting that the effect of the ovariectomy, i.e., estrogen deficiency may be lessened in this animal model. Leptin receptor was mainly found in osteoblasts and in bone marrow stromal cells including adipocytes. In addition, the expression of estrogen receptor did not seem to change after OVX in wild-type mice and in db/db mice. Both db/db sham and OVX mice featured many adipocytes close to the metaphyseal chondro-osseous junction, while osteoblasts accumulated glycogen granules and lipid droplets. Therefore, it seems likely that the disruption of leptin signaling in db/db mice shifts the cell differentiation cascade towards the adipocyte lineage, resulting in an osteoporotic bone independently of estrogen deficiency.


Asunto(s)
Fémur/patología , Obesidad/fisiopatología , Osteoporosis/fisiopatología , Receptores de Leptina/genética , Tejido Adiposo/patología , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Mutantes , Microscopía Electrónica de Transmisión , Osteoporosis/patología , Ovariectomía , Reacción en Cadena de la Polimerasa , Receptores de Leptina/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...