Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Langmuir ; 33(32): 8052-8061, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28738151

RESUMEN

The effect of headgroup variation on the association of supramolecular amphiphiles composed of 4-sulfonatocalix[6]arene (SCX6) and cationic surfactant possessing tetradecyl substituent was studied in aqueous solutions at pH 7. When the surfactant contained hydrophilic trimethylammonium, pyridinium, or 1-methylimidazolium headgroup, highly reversible temperature-responsive nanoparticle-supramolecular micelle transformation could be attained at appropriately chosen component mixing ratios and NaCl concentrations. In these cases, the substantial negative molar heat capacity change (ΔCp) rendered nanoparticle formation strongly endothermic at low temperature, whereas the assembly to supramolecular micelle was always accompanied by enthalpy gain. The ΔCp values became less negative when the charge density and the hydrophilic character of the surfactant headgroup diminished. The association of the more hydrophobic 6-methoxyquinolinium and quinolinium surfactants with SCX6 did not lead to supramolecular micelle formation because the self-assembly into nanoparticles was highly exothermic.

2.
Langmuir ; 32(41): 10651-10658, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27660853

RESUMEN

The effect of macrocycle size on the association of supramolecular amphiphiles composed of 4-sulfonatocalix[n]arene and 1-methyl-3-tetradecylimidazolium (C14mim+) was studied in aqueous solutions at pH 7. When the cavitand contained four sulfonatophenol units (SCX4), formation of spherical nanoparticles (NPs) was observed. By contrast, both supramolecular micelle (SM) and NP formation could be attained in the presence of NaCl when the larger, more flexible 4-sulfonatocalix[8]arene (SCX8) served as the host compound. The SCX8-promoted self-assembly into the SM was enthalpically more favorable than the NP production, but the molar heat capacity changes in the two processes barely differed. An addition of 50 mM NaCl significantly increased the enthalpy of C14mim+-SCX8 NP formation, thereby making the self-organization into the SM more favorable. The transformation of SM into NP at high temperatures was due to the substantial entropic contribution to the driving force behind the NP formation. The critical micelle concentration (cmc) and the local polarity in the headgroup domain were considerably lower for the SM compared with those of the conventional C14mim+Br- micelle.

3.
Langmuir ; 31(24): 6655-62, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26034843

RESUMEN

The effect of temperature and NaCl concentration variations on the self-assembly of 1-methyl-3-tetradecylimidazolium (C14mim(+)) and 4-sulfonatocalix[6]arene (SCX6) was studied by dynamic light scattering and isothermal calorimetric methods at pH 7. Inclusion complex formation promoted the self-assembly to spherical nanoparticles (NP), which transformed to supramolecular micelles (SM) in the presence of NaCl. Highly reversible, temperature-responsive behavior was observed, and the conditions of the NP-SM transition could be tuned by the alteration of C14mim(+):SCX6 mixing ratio and NaCl concentration. The association to SM was always exothermic with enthalpy independent of the amount of NaCl. In contrast, NPs were produced in endothermic process at low temperature, and the enthalpy change became less favorable upon increase in NaCl concentration. The NP formation was accompanied by negative molar heat capacity change, which further diminished when NaCl concentration was raised.

4.
Photochem Photobiol Sci ; 13(3): 499-508, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24346633

RESUMEN

Inclusion of 6-methoxy-1-methylquinolinium (C1MQ) in the cavity of cucurbit[7]uril (CB7) was studied by absorption, fluorescence, NMR and isothermal calorimetric methods in aqueous solution at 298 K. The free C1MQ exhibited dual-exponential fluorescence decay kinetics due to the two torsional isomers differing in the orientation of the methoxy moiety relative to the heterocyclic ring. The enthalpy-driven encapsulation of the heterocycle in CB7 led to a very stable 1 : 1 complex with a binding constant of (2.0 ± 0.4) × 10(6) M(-1). The rate of C1MQ-CB7 complex dissociation was found to be comparable to the NMR timescale. Because the methoxy moiety is oriented outward from the host, its s-cis-s-trans isomerization is slightly affected by the confinement. Inclusion complex formation significantly slowed down the photoinduced electron transfer from I(-) and N3(-) to the singlet-excited C1MQ, but did not preclude the reaction because long distance electron transfer occurred through the wall of the CB7 macrocycle. Due to the large difference in the quenching rate constant for free and encapsulated forms, C1MQ is an excellent probe for the study of the inclusion of nonfluorescent compounds in CB7 in the presence of Cl(-) or Br(-).


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Imidazoles/química , Compuestos de Quinolinio/química , Absorción , Aniones/química , Calorimetría , Electrones , Fluorescencia , Isomerismo , Cinética , Espectroscopía de Resonancia Magnética , Estructura Molecular , Análisis Espectral , Termodinámica , Factores de Tiempo , Agua/química
5.
Langmuir ; 29(25): 7682-8, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23691918

RESUMEN

The interaction of 4-sulfonatocalix[6]arene (SCX6) macrocycle with 1-alkyl-3-methylimidazolium type of ionic liquids possessing dodecyl, tetradecyl, or hexadecyl substituent was studied in aqueous solution at 298 K. Host-guest complexation promoted the spontaneous self-assembly into nanoparticles of 7:1 ionic liquid:SCX6 stoichiometry. Positively charged and stable nanoparticles were produced in solutions of 7-200-fold excess of ionic liquid as compared to the amount of SCX6. The negatively charged nanoparticles formed in solutions having 2-7 ionic liquid:SCX6 molar ratios evolved into larger species. The stability of the nanoparticles increased with the lengthening of aliphatic chain of the ionic liquid. Cryo-TEM experiments showed dense particles generally with spherical shape and multilayered structure, which has been confirmed by small-angle neutron scattering.


Asunto(s)
Líquidos Iónicos/química , Compuestos Macrocíclicos/química , Microscopía por Crioelectrón , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...