Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 9: 970391, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425655

RESUMEN

Human equilibrative nucleoside transporters represent a major pharmaceutical target for cardiac, cancer and viral therapies. Understanding the molecular basis for transport is crucial for the development of improved therapeutics through structure-based drug design. ENTs have been proposed to utilise an alternating access mechanism of action, similar to that of the major facilitator superfamily. However, ENTs lack functionally-essential features of that superfamily, suggesting that they may use a different transport mechanism. Understanding the molecular basis of their transport requires insight into diverse conformational states. Differences between intermediate states may be discrete and mediated by subtle gating interactions, such as salt bridges. We identified four variants of human equilibrative nucleoside transporter isoform 1 (hENT1) at the large intracellular loop (ICL6) and transmembrane helix 7 (TM7) that stabilise the apo-state (∆T m 0.7-1.5°C). Furthermore, we showed that variants K263A (ICL6) and I282V (TM7) specifically stabilise the inhibitor-bound state of hENT1 (∆∆T m 5.0 ± 1.7°C and 3.0 ± 1.8°C), supporting the role of ICL6 in hENT1 gating. Finally, we showed that, in comparison with wild type, variant T336A is destabilised by nitrobenzylthioinosine (∆∆T m -4.7 ± 1.1°C) and binds it seven times worse. This residue may help determine inhibitor and substrate sensitivity. Residue K263 is not present in the solved structures, highlighting the need for further structural data that include the loop regions.

2.
Sci Rep ; 10(1): 15165, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938971

RESUMEN

Identifying stabilising variants of membrane protein targets is often required for structure determination. Our new computational pipeline, the Integral Membrane Protein Stability Selector (IMPROvER) provides a rational approach to variant selection by employing three independent approaches: deep-sequence, model-based and data-driven. In silico tests using known stability data, and in vitro tests using three membrane protein targets with 7, 11 and 16 transmembrane helices provided measures of success. In vitro, individual approaches alone all identified stabilising variants at a rate better than expected by random selection. Low numbers of overlapping predictions between approaches meant a greater success rate was achieved (fourfold better than random) when approaches were combined and selections restricted to the highest ranked sites. The mix of information IMPROvER uses can be extracted for any helical membrane protein. We have developed the first general-purpose tool for selecting stabilising variants of [Formula: see text]-helical membrane proteins, increasing efficiency and reducing workload. IMPROvER can be accessed at http://improver.ddns.net/IMPROvER/ .


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ingeniería de Proteínas , Estabilidad Proteica , Programas Informáticos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clostridium/química , Clostridium/genética , Simulación por Computador , Tranportador Equilibrativo 1 de Nucleósido/química , Tranportador Equilibrativo 1 de Nucleósido/genética , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Moleculares , Conformación Proteica en Hélice alfa/genética , Desnaturalización Proteica , Pirofosfatasas/química , Pirofosfatasas/genética , Receptor de Hormona Paratiroídea Tipo 1/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Alineación de Secuencia , Análisis de Secuencia de Proteína , Homología Estructural de Proteína
3.
Methods Mol Biol ; 2168: 105-121, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33582989

RESUMEN

There are very few generic methods to assess the stability and functional properties of membrane proteins solubilized in detergent. For this purpose, a thiol-reactive fluorochrome N-[4-(7-diethylamino-4-methyl-3-coumarinyl)phenyl]maleimide (CPM) can be used. An unfolding profile is obtained when the fluorochrome becomes fluorescent on reaction with cysteine residues that have been exposed during thermal denaturation of the protein population. The method was initially developed to optimize the stability of membrane proteins for crystallization studies, but in the course of our work we found many other applications. First, the assay can be used to study the binding of inhibitors, substrates, lipids, and other effectors to membrane proteins. Second, the assay can be used to understand the dynamics of proteins, allowing states to be defined by changes in accessibility of cysteine residues or by changes in specific amino acid interactions. Finally, the assay can be used to study state-dependent domain interactions, for example, as part of regulatory mechanisms. The CPM thermostability assay represents a broadly applicable and versatile tool for a wide range of applications in the functional and structural analysis of membrane proteins.


Asunto(s)
Bacterias/metabolismo , Cumarinas/química , Detergentes/química , Colorantes Fluorescentes/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/química , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Humanos , Desnaturalización Proteica , Estabilidad Proteica , Temperatura
4.
IUBMB Life ; 70(12): 1222-1232, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30281880

RESUMEN

The mitochondrial ATP-Mg/Pi carrier is responsible for the calcium-dependent regulation of adenosine nucleotide concentrations in the mitochondrial matrix, which allows mitochondria to respond to changing energy requirements of the cell. The carrier is expressed in mitochondria of fungi, plants and animals and belongs to the family of mitochondrial carriers. The carrier is unusual as it consists of three separate domains: (i) an N-terminal regulatory domain with four calcium-binding EF-hands similar to calmodulin, (ii) a loop domain containing an amphipathic α-helix and (iii) a mitochondrial carrier domain related to the mitochondrial ADP/ATP carrier. This striking example of three domains coming together from different origins to provide new functions represents an interesting quirk of evolution. In this review, we outline how the carrier was identified and how its physiological role was established with a focus on human isoforms. We exploit the sequence and structural information of the domains to explore the similarities and differences to their closest counterparts; mitochondrial ADP/ATP carriers and proteins with four EF-hands. We discuss how their combined function has led to a mechanism for calcium-regulated transport of adenosine nucleotides. Finally, we compare the ATP-Mg/Pi carrier with the mitochondrial aspartate/glutamate carrier, the only other mitochondrial carrier regulated by calcium, and we will argue that they have arisen by convergent rather than divergent evolution. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1222-1232, 2018.


Asunto(s)
Antiportadores/genética , Señalización del Calcio/genética , Mitocondrias/genética , Translocasas Mitocondriales de ADP y ATP/genética , Proteínas Mitocondriales/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Humanos , Mitocondrias/metabolismo , Conformación Proteica , Dominios Proteicos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Methods Enzymol ; 607: 131-156, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30149856

RESUMEN

Membrane-bound pyrophosphatases (mPPases) couple pyrophosphate hydrolysis to H+ and/or Na+ pumping across membranes and are found in all domains of life except for multicellular animals including humans. They are important for development and stress resistance in plants. Furthermore, mPPases play a role in virulence of human pathogens that cause severe diseases such as malaria and African sleeping sickness. Sequence analysis, functional studies, and recently solved crystal structures have contributed to the understanding of the mPPase catalytic cycle. However, several key mechanistic features remain unknown. During evolution, several subgroups of mPPases differing in their pumping specificity and cofactor dependency arose. mPPases are classified into one of five subgroups, usually by sequence analysis. However, classification based solely on sequence has been inaccurate in several instances due to our limited understanding of the molecular mechanism of mPPases. Thus, pumping specificity and cofactor dependency of mPPases require experimental confirmation. Here, we describe a simple method for the determination of K+ dependency in mPPases using a hydrolytic activity assay. By coupling these dependency studies with site-directed mutagenesis, we have begun to build a better understanding of the molecular mechanisms of mPPases. We optimized the assay for thermostable mPPases that are commonly used as model systems in our lab, but the method is equally applicable to mesophilic mPPases with minor modifications.


Asunto(s)
Membrana Celular/metabolismo , Coenzimas/metabolismo , Pruebas de Enzimas/métodos , Potasio/metabolismo , Pirofosfatasas/metabolismo , Catálisis , Cationes Monovalentes/metabolismo , Difosfatos/metabolismo , Pruebas de Enzimas/instrumentación , Hidrólisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Pirofosfatasas/química , Pirofosfatasas/genética , Pirofosfatasas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae
6.
Methods Enzymol ; 607: 93-130, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30149870

RESUMEN

Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.


Asunto(s)
Pruebas de Enzimas/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Simulación de Dinámica Molecular , Pirofosfatasas/metabolismo , Imagen Individual de Molécula/métodos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Diseño de Fármacos , Pruebas de Enzimas/instrumentación , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Colorantes Fluorescentes/química , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Mutagénesis , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/aislamiento & purificación , Proteínas Protozoarias/metabolismo , Pirofosfatasas/química , Pirofosfatasas/genética , Pirofosfatasas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Alineación de Secuencia , Imagen Individual de Molécula/instrumentación , Programas Informáticos
7.
Res Microbiol ; 169(7-8): 450-454, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29409983

RESUMEN

The proteobacterial antimicrobial compound efflux (PACE) family of transport proteins was only recently described. PACE family transport proteins can confer resistance to a range of biocides used as disinfectants and antiseptics, and are encoded by many important Gram-negative human pathogens. However, we are only just beginning to appreciate the range of functions and the mechanism(s) of transport operating in these proteins. Genes encoding PACE family proteins are typically conserved in the core genomes of bacterial species rather than on recently acquired mobile genetic elements, suggesting that they confer important core functions in addition to biocide resistance. Three-dimensional structural information is not yet available for PACE family proteins. However, PACE proteins have several very highly conserved amino acid sequence motifs that are likely to be important for substrate transport. PACE proteins also display strong amino acid sequence conservation between their N and C-terminal halves, suggesting that they evolved by duplication of an ancestral protein comprised of two transmembrane helices. In light of their drug resistance functions in Gram-negative pathogens, PACE proteins should be the subject of detailed future investigation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Familia de Multigenes , Antibacterianos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Transporte Biológico , Desinfectantes/metabolismo , Bacterias Gramnegativas/química , Bacterias Gramnegativas/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteobacteria/química , Proteobacteria/genética , Proteobacteria/metabolismo
8.
Struct Dyn ; 4(3): 032105, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28345008

RESUMEN

Membrane-integral pyrophosphatases (mPPases) couple the hydrolysis of pyrophosphate (PPi) to the pumping of Na+, H+, or both these ions across a membrane. Recently solved structures of the Na+-pumping Thermotoga maritima mPPase (TmPPase) and H+-pumping Vigna radiata mPPase revealed the basis of ion selectivity between these enzymes and provided evidence for the mechanisms of substrate hydrolysis and ion-pumping. Our atomistic molecular dynamics (MD) simulations of TmPPase demonstrate that loop 5-6 is mobile in the absence of the substrate or substrate-analogue bound to the active site, explaining the lack of electron density for this loop in resting state structures. Furthermore, creating an apo model of TmPPase by removing ligands from the TmPPase:IDP:Na structure in MD simulations resulted in increased dynamics in loop 5-6, which results in this loop moving to uncover the active site, suggesting that interactions between loop 5-6 and the imidodiphosphate and its associated Mg2+ are important for holding a loop-closed conformation. We also provide further evidence for the transport-before-hydrolysis mechanism by showing that the non-hydrolyzable substrate analogue, methylene diphosphonate, induces low levels of proton pumping by VrPPase.

9.
Sci Rep ; 7: 45383, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28350015

RESUMEN

Mitochondrial ATP-Mg/Pi carriers import adenine nucleotides into the mitochondrial matrix and export phosphate to the cytosol. They are calcium-regulated to control the size of the matrix adenine nucleotide pool in response to cellular energetic demands. They consist of three domains: an N-terminal regulatory domain containing four calcium-binding EF-hands, a linker loop domain with an amphipathic α-helix and a C-terminal mitochondrial carrier domain for the transport of substrates. Here, we use thermostability assays to demonstrate that the carrier is regulated by calcium via a locking pin mechanism involving the amphipathic α-helix. When calcium levels in the intermembrane space are high, the N-terminus of the amphipathic α-helix is bound to a cleft in the regulatory domain, leading to substrate transport by the carrier domain. When calcium levels drop, the cleft closes, and the amphipathic α-helix is released to bind to the carrier domain via its C-terminus, locking the carrier in an inhibited state.


Asunto(s)
Antiportadores/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Antiportadores/genética , Proteínas de Unión al Calcio/genética , Humanos , Proteínas Mitocondriales/genética , Dominios Proteicos/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología
10.
Biochim Biophys Acta ; 1847(10): 1245-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26164100

RESUMEN

The mitochondrial ATP-Mg/Pi carrier imports adenine nucleotides from the cytosol into the mitochondrial matrix and exports phosphate. The carrier is regulated by the concentration of cytosolic calcium, altering the size of the adenine nucleotide pool in the mitochondrial matrix in response to energetic demands. The protein consists of three domains; (i) the N-terminal regulatory domain, which is formed of two pairs of fused calcium-binding EF-hands, (ii) the C-terminal mitochondrial carrier domain, which is involved in transport, and (iii) a linker region with an amphipathic α-helix of unknown function. The mechanism by which calcium binding to the regulatory domain modulates substrate transport in the carrier domain has not been resolved. Here, we present two new crystal structures of the regulatory domain of the human isoform 1. Careful analysis by SEC confirmed that although the regulatory domain crystallised as dimers, full-length ATP-Mg/Pi carrier is monomeric. Therefore, the ATP-Mg/Pi carrier must have a different mechanism of calcium regulation than the architecturally related aspartate/glutamate carrier, which is dimeric. The structure showed that an amphipathic α-helix is bound to the regulatory domain in a hydrophobic cleft of EF-hand 3/4. Detailed bioinformatics analyses of different EF-hand states indicate that upon release of calcium, EF-hands close, meaning that the regulatory domain would release the amphipathic α-helix. We propose a mechanism for ATP-Mg/Pi carriers in which the amphipathic α-helix becomes mobile upon release of calcium and could block the transport of substrates across the mitochondrial inner membrane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...