Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Immunol ; 211(3): 389-402, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37272847

RESUMEN

The impact of endemic parasitic infection on vaccine efficacy is an important consideration for vaccine development and deployment. We have examined whether intestinal infection with the natural murine helminth Heligmosomoides polygyrus bakeri alters Ag-specific Ab and cellular immune responses to oral and parenteral vaccination in mice. Oral vaccination of mice with a clinically relevant, live, attenuated, recombinant Salmonella vaccine expressing chicken egg OVA (Salmonella-OVA) induced the accumulation of activated, OVA-specific T effector cells rather than OVA-specific regulatory T cells in the GALT. Intestinal helminth infection significantly reduced Th1-skewed Ab responses to oral vaccination with Salmonella-OVA. Activated, adoptively transferred, OVA-specific CD4+ T cells accumulated in draining mesenteric lymph nodes of vaccinated mice, regardless of their helminth infection status. However, helminth infection increased the frequencies of adoptively transferred OVA-specific CD4+ T cells producing IL-4 and IL-10 in the mesenteric lymph node. Ab responses to the oral Salmonella-OVA vaccine were reduced in helminth-free mice adoptively transferred with OVA-specific CD4+ T cells harvested from mice with intestinal helminth infection. Intestinal helminth infection also significantly reduced Th2-skewed Ab responses to parenteral vaccination with OVA adsorbed to alum. These findings suggest that vaccine-specific CD4+ T cells induced in the context of helminth infection retain durable immunomodulatory properties and may promote blunted Ab responses to vaccination. They also underscore the potential need to treat parasitic infection before mass vaccination campaigns in helminth-endemic areas.


Asunto(s)
Helmintiasis , Parasitosis Intestinales , Ratones , Animales , Eficacia de las Vacunas , Linfocitos T CD4-Positivos , Vacunas Sintéticas , Ovalbúmina , Ratones Endogámicos BALB C
2.
J Allergy Clin Immunol ; 150(6): 1476-1485.e4, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35839842

RESUMEN

BACKGROUND: Circulating IgE and subsequent severe allergic reactions to peanut are sustained and propagated by recall of peanut allergen-specific memory B cells. OBJECTIVES: This study aimed to determine whether targeting mouse and human CD22 on peanut-specific memory B cells induces tolerance to peanut allergens. METHODS: Siglec-engaging tolerance-inducing antigenic liposomes (STALs) codisplaying peanut allergens (Ara h 1, Ara h 2, or Ara h 3) and high-affinity CD22 ligand (CD22L-STALs) were employed in various mouse models (BALB/cJ, C57BL/6, human CD22 transgenic, and NSG) of peanut allergy. To investigate memory B cells, a conferred memory model was used in which splenocytes from peanut-sensitized mice were transferred into naive animals. Reconstituted mice received either CD22L-STALs or an immunogenic liposome control, followed by a peanut allergen boost and later a challenge with individual peanut allergens. To assess the effects of CD22L-STALs on human B cells, PBMCs were injected into NSG mice, followed by administration of human CD22L-STALs (hCD22L-STALs) and later a whole peanut extract boost. Blood was collected to quantify WPE- and Ara h 1-, 2-, and 3-specific immunoglobulins. RESULTS: Mouse CD22L-STALs (mCD22L-STALs) significantly suppressed systemic memory to Ara h 1, Ara h 2, and Ara h 3 in BALB/cJ and C57BL/6 mice, as demonstrated by reduced allergen-specific IgE, IgG1, and anaphylaxis on challenge. Importantly, 2 doses of mCD22L-STALs led to prolonged tolerance for at least 3 months. hCD22L-STALs displayed similar suppression in mice expressing human CD22 on B cells. Finally, human B cells were tolerized in vivo in NSG mice by hCD22L-STALs. CONCLUSIONS: Antigen-specific exploitation of CD22 on memory B cells can induce systemic immune tolerance.


Asunto(s)
Alérgenos , Arachis , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Células B de Memoria , Tolerancia Inmunológica , Lectina 2 Similar a Ig de Unión al Ácido Siálico
3.
Curr Allergy Asthma Rep ; 19(12): 61, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797153

RESUMEN

PURPOSE OF REVIEW: Investigational allergen immunotherapies (AITs) including oral immunotherapy (OIT), sublingual immunotherapy (SLIT), and epicutaneous immunotherapy (EPIT) have proven to increase allergen thresholds required to elicit an allergic reaction in a majority of subjects. However, these studies lack consistent biomarkers to predict therapy outcomes. Here, we will review biomarkers that are currently being investigated for AIT. RECENT FINDINGS: The mechanisms underlying the therapeutic benefit of AIT involve various cell types, including mast cells, basophils, T cells, and B cells. Skin prick and basophil activation tests assess effector cell sensitivity to allergen and are decreased in subjects on AIT. Allergen-specific IgE increases initially and decreases with continued therapy, while allergen-specific IgG and IgA increase throughout therapy. Allergen-induced regulatory T cells (Tregs) increase throughout therapy and were found to be associated with sustained unresponsiveness after OIT. Subjects on OIT and SLIT have decreased Th2 cytokine production during therapy. Although trends have been reported, a common limitation of these biomarkers is that none are able to reproducibly predict prognosis during AIT. Further studies are needed to expand the currently available biomarker repertoire to provide personalized approaches to AIT.


Asunto(s)
Desensibilización Inmunológica , Hipersensibilidad a los Alimentos/terapia , Basófilos/inmunología , Biomarcadores , Hipersensibilidad a los Alimentos/diagnóstico , Hipersensibilidad a los Alimentos/inmunología , Humanos , Inmunoglobulinas/inmunología , Pruebas Cutáneas , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA