Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3422, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653965

RESUMEN

Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.


Asunto(s)
Quinasa de Linfoma Anaplásico , Dibenzocicloheptenos , Farnesiltransferasa , GTP Fosfohidrolasas , MicroARNs , Neuroblastoma , Piperidinas , Inhibidores de Proteínas Quinasas , Piridinas , Animales , Femenino , Humanos , Ratones , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Farnesiltransferasa/antagonistas & inhibidores , Farnesiltransferasa/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/patología , Neuroblastoma/metabolismo , Piperidinas/farmacología , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell Rep Med ; 5(3): 101472, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508140

RESUMEN

Anaplastic large cell lymphoma (ALCL) is an aggressive, CD30+ T cell lymphoma of children and adults. ALK fusion transcripts or mutations in the JAK-STAT pathway are observed in most ALCL tumors, but the mechanisms underlying tumorigenesis are not fully understood. Here, we show that dysregulated STAT3 in ALCL cooccupies enhancers with master transcription factors BATF3, IRF4, and IKZF1 to form a core regulatory circuit that establishes and maintains the malignant cell state in ALCL. Critical downstream targets of this network in ALCL cells include the protooncogene MYC, which requires active STAT3 to facilitate high levels of MYC transcription. The core autoregulatory transcriptional circuitry activity is reinforced by MYC binding to the enhancer regions associated with STAT3 and each of the core regulatory transcription factors. Thus, activation of STAT3 provides the crucial link between aberrant tyrosine kinase signaling and the core transcriptional machinery that drives tumorigenesis and creates therapeutic vulnerabilities in ALCL.


Asunto(s)
Linfoma Anaplásico de Células Grandes , Transducción de Señal , Adulto , Niño , Humanos , Transducción de Señal/genética , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/metabolismo , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patología , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Transformación Celular Neoplásica , Carcinogénesis/genética , Factor de Transcripción STAT3/genética
3.
Pediatr Blood Cancer ; 71(3): e30810, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38102963

RESUMEN

We report a unique case of high-grade B-cell lymphoma, not otherwise specified in a 5-year-old child. Whole-genome sequencing revealed a DDX3X::MLLT10 fusion, usually seen in T-cell acute lymphoblastic leukaemia (ALL). This suggests the novel idea that MLLT10 fusions are capable of driving B-cell malignancies. An IGH deletion usually only seen in adults was also found. These unique genetic findings provide novel insights into B-cell lymphomagenesis. The child remains in remission 7 year post chemotherapy, which demonstrates that novel complex molecular findings do not always denote high-risk disease.


Asunto(s)
Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Humanos , Niño , Preescolar , Linfoma de Células B/genética , Linfoma de Células B/patología , Linfocitos B , Factores de Transcripción/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , ARN Helicasas DEAD-box/genética
4.
Cancers (Basel) ; 13(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34885113

RESUMEN

Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...