Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 21(1): 632, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928103

RESUMEN

BACKGROUND: Functional genomics employs several experimental approaches to investigate gene functions. High-throughput techniques, such as loss-of-function screening and transcriptome profiling, allow to identify lists of genes potentially involved in biological processes of interest (so called hit list). Several computational methods exist to analyze and interpret such lists, the most widespread of which aim either at investigating of significantly enriched biological processes, or at extracting significantly represented subnetworks. RESULTS: Here we propose a novel network analysis method and corresponding computational software that employs the shortest path approach and centrality measure to discover members of molecular pathways leading to the studied phenotype, based on functional genomics screening data. The method works on integrated interactomes that consist of both directed and undirected networks - HIPPIE, SIGNOR, SignaLink, TFactS, KEGG, TransmiR, miRTarBase. The method finds nodes and short simple paths with significant high centrality in subnetworks induced by the hit genes and by so-called final implementers - the genes that are involved in molecular events responsible for final phenotypic realization of the biological processes of interest. We present the application of the method to the data from miRNA loss-of-function screen and transcriptome profiling of terminal human muscle differentiation process and to the gene loss-of-function screen exploring the genes that regulates human oxidative DNA damage recognition. The analysis highlighted the possible role of several known myogenesis regulatory miRNAs (miR-1, miR-125b, miR-216a) and their targets (AR, NR3C1, ARRB1, ITSN1, VAV3, TDGF1), as well as linked two major regulatory molecules of skeletal myogenesis, MYOD and SMAD3, to their previously known muscle-related targets (TGFB1, CDC42, CTCF) and also to a number of proteins such as C-KIT that have not been previously studied in the context of muscle differentiation. The analysis also showed the role of the interaction between H3 and SETDB1 proteins for oxidative DNA damage recognition. CONCLUSION: The current work provides a systematic methodology to discover members of molecular pathways in integrated networks using functional genomics screening data. It also offers a valuable instrument to explain the appearance of a set of genes, previously not associated with the process of interest, in the hit list of each particular functional genomics screening.


Asunto(s)
Redes Reguladoras de Genes , Genómica/métodos , Mapas de Interacción de Proteínas , Programas Informáticos , Transcriptoma , Humanos , Mutación con Pérdida de Función , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Fenotipo
2.
J Cachexia Sarcopenia Muscle ; 11(2): 452-463, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31828982

RESUMEN

BACKGROUND: Cachexia, highly prevalent in patients with non-small cell lung cancer (NSCLC), impairs quality of life and is associated with reduced tolerance and responsiveness to cancer therapy and decreased survival. MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in post-transcriptional gene regulation. Changes in intramuscular levels of miRNAs have been implicated in muscle wasting conditions. Here, we aimed to identify miRNAs that are differentially expressed in skeletal muscle of cachectic lung cancer patients to increase our understanding of cachexia and to allow us to probe their potential as therapeutic targets. METHODS: A total of 754 unique miRNAs were profiled and analysed in vastus lateralis muscle biopsies of newly diagnosed treatment-naïve NSCLC patients with cachexia (n = 8) and age-matched and sex-matched healthy controls (n = 8). miRNA expression analysis was performed using a TaqMan MicroRNA Array. In silico network analysis was performed on all significant differentially expressed miRNAs. Differential expression of the top-ranked miRNAs was confirmed using reverse transcription-quantitative real-time PCR in an extended group (n = 48) consisting of NSCLC patients with (n = 15) and without cachexia (n = 11) and healthy controls (n = 22). Finally, these miRNAs were subjected to univariate and multivariate Cox proportional hazard analysis using overall survival and treatment-induced toxicity data obtained during the follow-up of this group of patients. RESULTS: We identified 28 significant differentially expressed miRNAs, of which five miRNAs were up-regulated and 23 were down-regulated. In silico miRNA-target prediction analysis showed 158 functional gene targets, and pathway analysis identified 22 pathways related to the degenerative or regenerative processes of muscle tissue. Subsequently, the expression of six top-ranked miRNAs was measured in muscle biopsies of the entire patient group. Five miRNAs were detectable with reverse transcription-quantitative real-time PCR analysis, and their altered expression (expressed as fold change, FC) was confirmed in muscle of cachectic NSCLC patients compared with healthy control subjects: miR-424-5p (FC = 4.5), miR-424-3p (FC = 12), miR-450a-5p (FC = 8.6), miR-144-5p (FC = 0.59), and miR-451a (FC = 0.57). In non-cachectic NSCLC patients, only miR-424-3p was significantly increased (FC = 5.6) compared with control. Although the statistical support was not sufficient to imply these miRNAs as individual predictors of overall survival or treatment-induced toxicity, when combined in multivariate analysis, miR-450-5p and miR-451a resulted in a significant stratification between short-term and long-term survival. CONCLUSIONS: We identified differentially expressed miRNAs putatively involved in lung cancer cachexia. These findings call for further studies to investigate the causality of these miRNAs in muscle atrophy and the mechanisms underlying their differential expression in lung cancer cachexia.


Asunto(s)
Caquexia/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Músculo Esquelético/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
PLoS One ; 14(11): e0224787, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31710617

RESUMEN

Cancer Stem Cells (CSC), a subset of cancer cells resembling normal stem cells with self-renewal and asymmetric division capabilities, are present at various but low proportions in many tumors and are thought to be responsible for tumor relapses following conventional cancer therapies. In vitro, most intriguingly, isolated CSCs rapidly regenerate the original population of stem and non-stem cells (non-CSCs) as shown by various investigators. This phenomenon still remains to be explained. We propose a mathematical model of cancer cell population dynamics, based on the main parameters of cell population growth, including the proliferation rates, the rates of cell death and the frequency of symmetric and asymmetric cell divisions both in CSCs and non-CSCs sub-populations, and taking into account the stabilization phenomenon. The analysis of the model allows determination of time-varying corridors of probabilities for different cell fates, given the particular dynamics of cancer cells populations; and determination of a cell-cell communication factors influencing these time-varying probabilities of cell behavior (division, transition) scenarios. Though the results of the model have to be experimentally confirmed, we can anticipate the development of several fundamental and practical applications based on the theoretical results of the model.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Modelos Teóricos , Células Madre Neoplásicas/patología , Humanos
4.
Math Biosci Eng ; 16(6): 6602-6622, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31698578

RESUMEN

Protein synthesis is one of the most fundamental biological processes. Despite existence of multiple mathematical models of translation, surprisingly, there is no basic and simple chemical kinetic model of this process, derived directly from the detailed kinetic scheme. One of the reasons for this is that the translation process is characterized by indefinite number of states, because of the structure of the polysome. We bypass this difficulty by applying lumping of multiple states of translated mRNA into few dynamical variables and by introducing a variable describing the pool of translating ribosomes. The simplest model can be solved analytically. The simplest model can be extended, if necessary, to take into account various phenomena such as the limited amount of ribosomal units or regulation of translation by microRNA. The introduced model is more suitable to describe the protein synthesis in eukaryotes but it can be extended to prokaryotes. The model can be used as a building block for more complex models of cellular processes. We demonstrate the utility of the model in two examples. First, we determine the critical parameters of the synthesis of a single protein for the case when the ribosomal units are abundant. Second, we demonstrate intrinsic bi-stability in the dynamics of the ribosomal protein turnover and predict that a minimal number of ribosomes should pre-exists in a living cell to sustain its protein synthesis machinery, even in the absence of proliferation.


Asunto(s)
Modelos Biológicos , Biosíntesis de Proteínas , Proliferación Celular , Humanos , Cinética , MicroARNs/metabolismo , Polirribosomas/metabolismo , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Levaduras/metabolismo
5.
Cell Rep ; 18(9): 2256-2268, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28249169

RESUMEN

Breast cancer stem cells (bCSCs) have been implicated in tumor progression and therapeutic resistance; however, the molecular mechanisms that define this state are unclear. We have performed two microRNA (miRNA) gain- and loss-of-function screens to identify miRNAs that regulate the choice between bCSC self-renewal and differentiation. We find that micro-RNA (miR)-600 silencing results in bCSC expansion, while its overexpression reduces bCSC self-renewal, leading to decreased in vivo tumorigenicity. miR-600 targets stearoyl desaturase 1 (SCD1), an enzyme required to produce active, lipid-modified WNT proteins. In the absence of miR-600, WNT signaling is active and promotes self-renewal, whereas overexpression of miR-600 inhibits the production of active WNT and promotes bCSC differentiation. In a series of 120 breast tumors, we found that a low level of miR-600 is correlated with active WNT signaling and a poor prognosis. These findings highlight a miR-600-centered signaling network that governs bCSC-fate decisions and influences tumor progression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , MicroARNs/genética , Células Madre Neoplásicas/patología , Transducción de Señal/fisiología , Proteínas Wnt/genética , Vía de Señalización Wnt/fisiología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Estearoil-CoA Desaturasa/genética
6.
PLoS Genet ; 12(9): e1006318, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27662573

RESUMEN

Several studies propose an influence of chromatin on pre-mRNA splicing, but it is still unclear how widespread and how direct this phenomenon is. We find here that when assembled in vivo, the U2 snRNP co-purifies with a subset of chromatin-proteins, including histones and remodeling complexes like SWI/SNF. Yet, an unbiased RNAi screen revealed that the outcome of splicing is influenced by a much larger variety of chromatin factors not all associating with the spliceosome. The availability of this broad range of chromatin factors impacting splicing further unveiled their very context specific effect, resulting in either inclusion or skipping, depending on the exon under scrutiny. Finally, a direct assessment of the impact of chromatin on splicing using an in vitro co-transcriptional splicing assay with pre-mRNAs transcribed from a nucleosomal template, demonstrated that chromatin impacts nascent pre-mRNP in their competence for splicing. Altogether, our data show that numerous chromatin factors associated or not with the spliceosome can affect the outcome of splicing, possibly as a function of the local chromatin environment that by default interferes with the efficiency of splicing.

7.
Cell Cycle ; 15(5): 667-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27027998

RESUMEN

MicroRNAs (miRNAs) in the AGO-containing RISC complex control messenger RNA (mRNA) translation by binding to mRNA 3' untranslated region (3'UTR). The relationship between miRNAs and other regulatory factors that also bind to mRNA 3'UTR, such as CPEB1 (cytoplasmic polyadenylation element-binding protein), remains elusive. We found that both CPEB1 and miR-15b control the expression of WEE1, a key mammalian cell cycle regulator. Together, they repress WEE1 protein expression during G1 and S-phase. Interestingly, the 2 factors lose their inhibitory activity at the G2/M transition, at the time of the cell cycle when WEE1 expression is maximal, and, moreover, rather activate WEE1 translation in a synergistic manner. Our data show that translational regulation by RISC and CPEB1 is essential in cell cycle control and, most importantly, is coordinated, and can be switched from inhibition to activation during the cell cycle.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , MicroARNs/fisiología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Transcripción/fisiología , Factores de Escisión y Poliadenilación de ARNm/fisiología , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Tirosina Quinasas/genética , Interferencia de ARN
8.
Oncol Rep ; 35(5): 3101-5, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26986008

RESUMEN

The COP9/signalosome (CSN) multi-protein complex regulates the activity of cullin-RING ubiquitin ligases (CRLs), including the DDB2 and CSA CRL4 ligases (CRL4DDB2 and CRL4CSA), which are involved in the repair of UV-induced DNA damages. In the present study, we demonstrated that the protein kinase ATM, a key component of the DNA damage response (DDR), phosphorylates CSN1 and CSN7a, two subunits of the CSN complex, in a UV-dependent manner. The phosphorylation of CSN1 on serine 474 was detected as early as 3 h after UV-exposure, peaked at 8 h and persisted until 48 h post-UV irradiation. Such a time course suggests a role in late DDR rather than in DNA repair. Consistently, overexpression of a phosphorylation-resistant S474A CSN1 mutant reduced UV-induced apoptosis. Thus, CSN1 appears to play a role not only in DNA repair but also in UV-induced apoptosis.


Asunto(s)
Apoptosis/efectos de la radiación , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de la radiación , Rayos Ultravioleta , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Complejo del Señalosoma COP9 , Daño del ADN , Reparación del ADN , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación
9.
Biochim Biophys Acta ; 1863(2): 263-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26608607

RESUMEN

CNOT6L is a deadenylase subunit belonging to the CCR4-NOT complex, a major deadenylase complex in eukaryotes involved at multiple levels in regulation of gene expression. While CNOT6L is expressed in skeletal muscle cells, its specific functions in this tissue are still largely unknown. Our previous work highlighted the functional of CNOT6L in skeletal muscle cell differentiation. To further explore how CNOT6L regulates myogenesis, we used here gene expression analysis to identify CNOT6L mRNA targets in human myoblasts. Among these novel targets, IL-8 (interleukin 8) mRNA was the most upregulated in CNOT6L knock-down (KD) cells. Biochemical approaches and poly (A) tail length assays showed that IL-8 mRNA is a direct target of CNOT6L, and further investigations by loss- and gain-of-function assays pointed out that IL-8 is an important effector of myogenesis. Therefore, we have characterized CNOT6L-IL-8 as a new signaling axis that regulates myogenesis.


Asunto(s)
Diferenciación Celular/genética , Interleucina-8/genética , Músculo Esquelético/metabolismo , Ribonucleasas/genética , Adulto , Animales , Western Blotting , Línea Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Interleucina-8/metabolismo , Microscopía Fluorescente , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Mioblastos/citología , Mioblastos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasas/metabolismo , Transducción de Señal/genética , Transcripción Genética
10.
PLoS One ; 10(2): e0116853, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25692472

RESUMEN

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder and is one of the most common forms of muscular dystrophy. We have recently shown that some hallmarks of FSHD are already expressed in fetal FSHD biopsies, thus opening a new field of investigation for mechanisms leading to FSHD. As microRNAs (miRNAs) play an important role in myogenesis and muscle disorders, in this study we compared miRNAs expression levels during normal and FSHD muscle development. METHODS: Muscle biopsies were obtained from quadriceps of both healthy control and FSHD1 fetuses with ages ranging from 14 to 33 weeks of development. miRNA expression profiles were analyzed using TaqMan Human MicroRNA Arrays. RESULTS: During human skeletal muscle development, in control muscle biopsies we observed changes for 4 miRNAs potentially involved in secondary muscle fiber formation and 5 miRNAs potentially involved in fiber maturation. When we compared the miRNA profiles obtained from control and FSHD biopsies, we did not observe any differences in the muscle specific miRNAs. However, we identified 8 miRNAs exclusively expressed in FSHD1 samples (miR-330, miR-331-5p, miR-34a, miR-380-3p, miR-516b, miR-582-5p, miR-517* and miR-625) which could represent new biomarkers for this disease. Their putative targets are mainly involved in muscle development and morphogenesis. Interestingly, these FSHD1 specific miRNAs do not target the genes previously described to be involved in FSHD. CONCLUSIONS: This work provides new candidate mechanisms potentially involved in the onset of FSHD pathology. Whether these FSHD specific miRNAs cause deregulations during fetal development, or protect against the appearance of the FSHD phenotype until the second decade of life still needs to be investigated.


Asunto(s)
Feto/metabolismo , MicroARNs/genética , Músculo Esquelético/embriología , Músculo Esquelético/patología , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Transcriptoma , Biopsia , Estudios de Casos y Controles , Biología Computacional , Femenino , Feto/embriología , Feto/patología , Humanos , Masculino , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapulohumeral/embriología
11.
Biochem J ; 466(1): 85-93, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25422988

RESUMEN

A genome-wide screen had previously shown that knocking down miR-98 and let-7g, two miRNAs of the let-7 family, leads to a dramatic increase in terminal myogenic differentiation. In the present paper, we report that a transcriptomic analysis of human myoblasts, where miR-98 was knocked down, revealed that approximately 240 genes were sensitive to miR-98 depletion. Among these potential targets of miR-98, we identified the transcriptional repressor E2F5 and showed that it is a direct target of miR-98. Knocking down simultaneously E2F5 and miR-98 almost fully restored normal differentiation, indicating that E2F5 is involved in the regulation of skeletal muscle differentiation. We subsequently show that E2F5 can bind to the promoters of two inhibitors of terminal muscle differentiation, ID1 (inhibitor of DNA binding 1) and HMOX1 (heme oxygenase 1), which decreases their expression in skeletal myoblasts. We conclude that miR-98 regulates muscle differentiation by altering the expression of the transcription factor E2F5 and, in turn, of multiple E2F5 targets.


Asunto(s)
Diferenciación Celular/genética , Factor de Transcripción E2F5/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Mioblastos Esqueléticos/metabolismo , Factor de Transcripción E2F5/antagonistas & inhibidores , Factor de Transcripción E2F5/metabolismo , Perfilación de la Expresión Génica , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Mioblastos Esqueléticos/citología , Regiones Promotoras Genéticas , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transcriptoma
12.
J Natl Cancer Inst ; 106(11)2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25313246

RESUMEN

BACKGROUND: The Sonic Hedgehog (SHH) signaling pathway plays an important role in neural crest cell fate during embryonic development and has been implicated in the progression of multiple cancers that include neuroblastoma, a neural crest cell-derived disease. While most of the SHH signaling is mediated by the well-described canonical pathway leading to the activation of Smoothened and Gli, it has recently been shown that cell-adhesion molecule-related/downregulated by oncogenes (CDON) serves as a receptor for SHH and contributes to SHH-induced signaling. CDON has also been recently described as a dependence receptor, triggering apoptosis in the absence of SHH. This CDON proapoptotic activity has been suggested to constrain tumor progression. METHODS: CDON expression was analyzed by quantitative-reverse transcription-polymerase chain reaction in a panel of 226 neuroblastoma patients and associated with stages, overall survival, and expression of miR181 family members using Kaplan Meier and Pearson correlation methods. Cell death assays were performed in neuroblastoma cell lines and tumor growth was investigated in the chick chorioallantoic model. All statistical tests were two-sided. RESULTS: CDON expression was inversely associated with neuroblastoma aggressiveness (P < .001). Moreover, re-expression of CDON in neuroblastoma cell lines was associated with apoptosis in vitro and tumor growth inhibition in vivo. We show that CDON expression is regulated by the miR181 miRNA family, whose expression is directly associated with neuroblastoma aggressiveness (survival: high miR181-b 73.2% vs low miR181-b 54.6%; P = .03). CONCLUSIONS: Together, these data support the view that CDON acts as a tumor suppressor in neuroblastomas, and that CDON is tightly regulated by miRNAs.


Asunto(s)
Apoptosis , Moléculas de Adhesión Celular/metabolismo , MicroARNs/metabolismo , Neuroblastoma/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Estimación de Kaplan-Meier , Neuroblastoma/genética , Neuroblastoma/patología , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
13.
Cancer Res ; 73(24): 7290-300, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24142344

RESUMEN

Cancer stem-like cells (CSC) have been widely studied, but their clinical relevance has yet to be established in breast cancer. Here, we report the establishment of primary breast tumor-derived xenografts (PDX) that encompass the main diversity of human breast cancer and retain the major clinicopathologic features of primary tumors. Successful engraftment was correlated with the presence of ALDH1-positive CSCs, which predicted prognosis in patients. The xenografts we developed showed a hierarchical cell organization of breast cancer with the ALDH1-positive CSCs constituting the tumorigenic cell population. Analysis of gene expression from functionally validated CSCs yielded a breast CSC signature and identified a core transcriptional program of 19 genes shared with murine embryonic, hematopoietic, and neural stem cells. This generalized stem cell program allowed the identification of potential CSC regulators, which were related mainly to metabolic processes. Using an siRNA genetic screen designed to target the 19 genes, we validated the functional role of this stem cell program in the regulation of breast CSC biology. Our work offers a proof of the functional importance of CSCs in breast cancer, and it establishes the reliability of PDXs for use in developing personalized CSC therapies for patients with breast cancer.


Asunto(s)
Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Isoenzimas/metabolismo , Células Madre Neoplásicas/enzimología , Retinal-Deshidrogenasa/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Animales , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Diferenciación Celular/genética , Femenino , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Isoenzimas/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/patología , Hibridación de Ácido Nucleico , Pronóstico , Estudios Prospectivos , Retinal-Deshidrogenasa/genética , Transfección
14.
PLoS One ; 8(8): e71927, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23991007

RESUMEN

MiRNAs impact on the control of cell fate by regulating gene expression at the post-transcriptional level. Here, using mammalian muscle differentiation as a model and a phenotypic loss-of-function screen, we explored the function of miRNAs at the genome-wide level. We found that the depletion of a high number of miRNAs (63) impacted on differentiation of human muscle precursors, underscoring the importance of this post-transcriptional mechanism of gene regulation. Interestingly, a comparison with miRNA expression profiles revealed that most of the hit miRNAs did not show any significant variations of expression during differentiation. These constitutively expressed miRNAs might be required for basic and/or essential cell function, or else might be regulated at the post-transcriptional level. MiRNA inhibition yielded a variety of phenotypes, reflecting the widespread miRNA involvement in differentiation. Using a functional screen (the STarS--Suppressor Target Screen--approach, i. e. concomitant knockdown of miRNAs and of candidate target proteins), we discovered miRNA protein targets that are previously uncharacterized controllers of muscle-cell terminal differentiation. Our results provide a strategy for functional annotation of the human miRnome.


Asunto(s)
Diferenciación Celular/genética , Genoma Humano/genética , MicroARNs/genética , Mioblastos/metabolismo , Animales , Western Blotting , Línea Celular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mioblastos/citología , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Transcription ; 4(3): 89-91, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23584094

RESUMEN

Whereas in yeast the function and mode of action of nuclear RNAi are well documented, mammalian nuclear RNAi is a matter of debates. Several papers support a role for nuclear Argonaute in alternative splicing. However, the molecular mechanism remains elusive. Here, we discuss the human nuclear RNAi mechanism in light of what is known of the yeast process.


Asunto(s)
Proteínas Argonautas/genética , Cromatina/metabolismo , Saccharomyces cerevisiae/metabolismo , Empalme Alternativo , Evolución Biológica , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Receptores de Hialuranos/genética , Interferencia de ARN , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/metabolismo
16.
Nat Struct Mol Biol ; 19(10): 998-1004, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22961379

RESUMEN

Argonaute proteins play a major part in transcriptional gene silencing in many organisms, but their role in the nucleus of somatic mammalian cells remains elusive. Here, we have immunopurified human Argonaute-1 and Argonaute-2 (AGO1 and AGO2) chromatin-embedded proteins and found them associated with chromatin modifiers and, notably, with splicing factors. Using the CD44 gene as a model, we show that AGO1 and AGO2 facilitate spliceosome recruitment and modulate RNA polymerase II elongation rate, thereby affecting alternative splicing. Proper AGO1 and AGO2 recruitment to CD44 transcribed regions required the endonuclease Dicer and the chromobox protein HP1γ, and resulted in increased histone H3 lysine 9 methylation on variant exons. Our data thus uncover a new model for the regulation of alternative splicing, in which Argonaute proteins couple RNA polymerase II elongation to chromatin modification.


Asunto(s)
Empalme Alternativo , Proteínas Argonautas/metabolismo , Cromatina/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Animales , Proteínas Argonautas/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Factores Eucarióticos de Iniciación/genética , Fibroblastos/fisiología , Células HeLa , Histonas/metabolismo , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Lisina/metabolismo , Metilación , Ratones , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Interferente Pequeño , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Empalmosomas/metabolismo
17.
RNA ; 18(9): 1635-55, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22850425

RESUMEN

MicroRNAs (miRNAs) are key regulators of all important biological processes, including development, differentiation, and cancer. Although remarkable progress has been made in deciphering the mechanisms used by miRNAs to regulate translation, many contradictory findings have been published that stimulate active debate in this field. Here we contribute to this discussion in three ways. First, based on a comprehensive analysis of the existing literature, we hypothesize a model in which all proposed mechanisms of microRNA action coexist, and where the apparent mechanism that is detected in a given experiment is determined by the relative values of the intrinsic characteristics of the target mRNAs and associated biological processes. Among several coexisting miRNA mechanisms, the one that will effectively be measurable is that which acts on or changes the sensitive parameters of the translation process. Second, we have created a mathematical model that combines nine known mechanisms of miRNA action and estimated the model parameters from the literature. Third, based on the mathematical modeling, we have developed a computational tool for discriminating among different possible individual mechanisms of miRNA action based on translation kinetics data that can be experimentally measured (kinetic signatures). To confirm the discriminatory power of these kinetic signatures and to test our hypothesis, we have performed several computational experiments with the model in which we simulated the coexistence of several miRNA action mechanisms in the context of variable parameter values of the translation.


Asunto(s)
MicroARNs/metabolismo , Modelos Biológicos , Cinética , Biosíntesis de Proteínas/fisiología
18.
Mol Vis ; 17: 2228-40, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21897745

RESUMEN

PURPOSE: The apoptosis of retinal neurons plays a critical role in the pathogenesis of diabetic retinopathy (DR), but the molecular mechanisms underlying this phenomenon remain unclear. The purpose of this study was to investigate the cellular localization and the expression of microRNA-29b (miR-29b) and its potential target PKR associated protein X (RAX), an activator of the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway, in the retina of normal and diabetic rats. METHODS: Retinas were obtained from normal and diabetic rats within 35 days after streptozotocin (STZ) injection. In silico analysis indicated that RAX is a potential target of miR-29b. The cellular localization of miR-29b and RAX was assessed by in situ hybridization and immunofluorescence, respectively. The expression levels of miR-29b and RAX mRNA were evaluated by quantitative reverse transcription PCR (qRT-PCR), and the expression of RAX protein was evaluated by western blot. A luciferase reporter assay and inhibition of endogenous RAX were performed to confirm whether RAX is a direct target of miR-29b as predicted by the in silico analysis. RESULTS: We found that miR-29b and RAX are localized in the retinal ganglion cells (RGCs) and the cells of the inner nuclear layer (INL) of the retinas from normal and diabetic rats. Thus, the expression of miR-29b and RAX, as assessed in the retina by quantitative RT-PCR, reflects their expression in the RGCs and the cells of the INL. We also revealed that RAX protein is upregulated (more than twofold) at 3, 6, 16, and 22 days and downregulated (70%) at 35 days, whereas miR-29b is upregulated (more than threefold) at 28 and 35 days after STZ injection. We did not confirm the computational prediction that RAX is a direct target of miR-29b. CONCLUSIONS: Our results suggest that RAX expression may be indirectly regulated by miR-29b, and the upregulation of this miRNA at the early stage of STZ-induced diabetes may have a protective effect against the apoptosis of RGCs and cells of the INL by the pro-apoptotic RNA-dependent protein kinase (PKR) signaling pathway.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Horizontales de la Retina/metabolismo , Transducción de Señal/genética , eIF-2 Quinasa/metabolismo , Animales , Apoptosis/genética , Western Blotting , Diabetes Mellitus Experimental/genética , Retinopatía Diabética/genética , Regulación de la Expresión Génica , Genes Reporteros , Proteínas de Homeodominio/genética , Hibridación in Situ , Luciferasas/análisis , Masculino , MicroARNs/genética , Ratas , Ratas Wistar , Células Ganglionares de la Retina/citología , Células Horizontales de la Retina/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba , eIF-2 Quinasa/genética
19.
Nat Genet ; 43(3): 242-5, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21278745

RESUMEN

Susceptibility to Crohn's disease, a complex inflammatory disease, is influenced by common variants at many loci. The common exonic synonymous SNP (c.313C>T) in IRGM, found in strong linkage disequilibrium with a deletion polymorphism, has been classified as non-causative because of the absence of an alteration in the IRGM protein sequence or splice sites. Here we show that a family of microRNAs (miRNAs), miR-196, is overexpressed in the inflammatory intestinal epithelia of individuals with Crohn's disease and downregulates the IRGM protective variant (c.313C) but not the risk-associated allele (c.313T). Subsequent loss of tight regulation of IRGM expression compromises control of intracellular replication of Crohn's disease-associated adherent invasive Escherichia coli by autophagy. These results suggest that the association of IRGM with Crohn's disease arises from a miRNA-based alteration in IRGM regulation that affects the efficacy of autophagy, thereby implicating a synonymous polymorphism as a likely causal variant.


Asunto(s)
Autofagia/genética , Enfermedad de Crohn/genética , Proteínas de Unión al GTP/genética , MicroARNs/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Unión , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Mucosa Intestinal/metabolismo
20.
Bull Acad Natl Med ; 194(2): 319-24; discussion 324-5, 2010 Feb.
Artículo en Francés | MEDLINE | ID: mdl-21166121

RESUMEN

The discovery of regulatory small non-coding RNAs represents a revolution in our understanding of gene regulation. These small non-coding RNAs are powerful tools for exploring cellular pathways and for artificially controlling gene expression. Natural small RNAs also represent potential therapeutic targets.


Asunto(s)
Epigénesis Genética , MicroARNs/genética , ARN Interferente Pequeño/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA