Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epilepsy Res ; 154: 132-138, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31132598

RESUMEN

Temporal lobe epilepsy (TLE) is a form of adult epilepsy involving the entorhinal cortex (EC). Layer II neurons of the medial EC (mEC) are spared and become hyperexcitable in TLE. Studies have suggested a role for T-type calcium channels (T-type Ca2+ channels) in facilitating increases in neuronal activity associated with TLE within the hippocampus. We sought to determine if T-type Ca2+ channels play a role in facilitating neuronal hyperexcitability of layer II mEC stellate neurons in TLE. TLE was induced in rats by electrical stimulation of the hippocampus to induce status epilepticus (SE). Brain slices were prepared from rats exhibiting spontaneous seizures and compared with age-matched control rats. Action potentials (APs) were evoked either by current injection steps or via presynaptic stimulation of mEC deep layers. The selective T-type Ca2+ channel antagonist, TTA-P2 (1 µM), was applied to determine the role of T-type Ca2+ channels in maintaining neuronal excitability. Quantitative PCR techniques were used to assess T-type Ca2+ channel isoform mRNA levels within the mEC layer II. TLE mEC layer II stellate neurons were hyperexcitable compared to control neurons, evoking a higher frequency of APs and generating bursts of APs when synaptically stimulated. TTA-P2 (1 µM) reduced firing frequencies in TLE and control neurons and reduced AP burst firing in TLE stellate neurons. TTA-P2 had little effect on synaptically evoked AP's in control neurons. TTA-P2 also inhibited rebound APs evoked in TLE neurons to a greater degree than in control neurons. TLE tissue had almost a 3-fold increase in Cav3.1 mRNA compared to controls. Cav3.2 or Cav3.3 levels were unchanged. These findings support a role for T-type Ca2+ channel in establishing neuronal hyperexcitability of mEC layer II stellate neurons in TLE. Increased expression of Cav3.1 may be important for establishing neuronal hyperexcitability of mEC layer II neurons in TLE.


Asunto(s)
Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo T/fisiología , Corteza Entorrinal/fisiología , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Bloqueadores de los Canales de Calcio/farmacología , Corteza Entorrinal/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Ratas , Ratas Sprague-Dawley
2.
Neurobiol Dis ; 108: 183-194, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28860087

RESUMEN

Temporal lobe epilepsy (TLE) is a common form of adult epilepsy involving the limbic structures of the temporal lobe. Subiculum neurons act to provide a major output from the hippocampus and consist of a large population of endogenously bursting excitatory neurons. In TLE, subiculum neurons are largely spared, become hyperexcitable and show spontaneous epileptiform activity. The basis for this hyperexcitability is unclear, but is likely to involve alterations in the expression levels and function of various ion channels. In this study, we sought to determine the importance of sodium channel currents in facilitating neuronal hyperexcitability of subiculum neurons in the continuous hippocampal stimulation (CHS) rat model of TLE. Subiculum neurons from TLE rats were hyperexcitable, firing a higher frequency of action potentials after somatic current injection and action potential (AP) bursts after synaptic stimulation. Voltage clamp recordings revealed increases in resurgent (INaR) and persistent (INaP) sodium channel currents and pro-excitatory shifts in sodium channel activation and inactivation parameters that would facilitate increases in AP generation. Attenuation of INaR and INaP currents with 4,9-anhydro-tetrodotoxin (4,9-ah TTX; 100nM), a toxin with increased potency against Nav1.6 channels, suppressed neuronal firing frequency and inhibited AP bursting induced by synaptic stimulation in TLE neurons. These findings support an important role of sodium channels, particularly Nav1.6, in facilitating subiculum neuron hyperexcitability in TLE and provide further support for the importance of INaR and INaP currents in establishing epileptiform activity of subiculum neurons.


Asunto(s)
Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Anticonvulsivantes/farmacología , Modelos Animales de Enfermedad , Estimulación Eléctrica , Electrodos Implantados , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Inmunohistoquímica , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Estado Epiléptico , Técnicas de Cultivo de Tejidos
3.
J Neurosci ; 37(33): 7837-7847, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28716964

RESUMEN

HIV-associated neurocognitive disorder (HAND) affects approximately half of HIV-infected patients. Loss of synaptic connections is a hallmark of many neurocognitive disorders, including HAND. The HIV-1 protein transactivator of transcription (Tat) disrupts synaptic connections both in vitro and in vivo and has been linked to impaired neurocognitive function in humans. In vitro studies have shown that ifenprodil, an antagonist selective for GluN2B-containing NMDARs, reverses synapse loss when applied after Tat. Here, we tested the hypothesis that Tat-induced loss and ifenprodil-mediated rescue of synaptic spines in vivo would predict impairment and rescue of cognitive function. Using intracranial multiphoton imaging, we found that infusion of 100 ng of HIV-1 Tat into the lateral ventricle of yellow fluorescent protein-expressing transgenic mice produced a 17 ± 1% loss of dendritic spines in layer 1 of retrosplenial cortex. Repeated imaging of the same dendrites over 3 weeks enabled longitudinal experiments that demonstrated sustained spine loss after Tat infusion and transient rescue after ifenprodil administration (10 mg/kg, i.p.). Parallel trace fear conditioning experiments showed that spine loss predicted learning deficits and that the time course of ifenprodil-induced rescue of spine density correlated with restoration of cognitive function. These results show for the first time that, during exposure to an HIV-1 neurotoxin in vivo, alteration of GluN2B-containing NMDAR signaling suppresses spine density and impairs learning. Pharmacological inhibition of these NMDARs rescued spines and restored cognitive function. Drugs that rescue synapses may improve neurocognitive function in HAND.SIGNIFICANCE STATEMENT Synaptodendritic damage correlates with cognitive decline in HIV-associated neurocognitive disorder (HAND) patients. We developed an in vivo imaging approach for longitudinal tracking of spine density that enabled correlation of synaptic changes with behavioral outcomes in a model of HAND. We show for the first time that spine loss after exposure to an HIV-1 protein can be reversed pharmacologically and that loss and recovery of dendritic spines predict impairment and restoration of cognitive function, respectively. Therefore, synapse loss, the hallmark of cognitive decline in HAND, is reversible. Drugs that restore spine density may have broad application for improving cognitive function during the early phases of neurodegenerative diseases.


Asunto(s)
Disfunción Cognitiva/prevención & control , Antagonistas de Aminoácidos Excitadores/administración & dosificación , VIH-1 , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/toxicidad , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Infusiones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Piperidinas/administración & dosificación , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/administración & dosificación
4.
J Neurosci ; 33(45): 17908-20, 2013 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-24198379

RESUMEN

Synaptodendritic damage correlates with cognitive decline in many neurodegenerative diseases, including human immunodeficiency virus-1 (HIV-1)-associated neurocognitive disorders (HAND). Because HIV-1 does not infect neurons, viral-mediated toxicity is indirect, resulting from released neurotoxins such as the HIV-1 protein transactivator of transcription (Tat). We compared the effects of Tat on inhibitory and excitatory synaptic connections between rat hippocampal neurons using an imaging-based assay that quantified clusters of the scaffolding proteins gephyrin or PSD95 fused to GFP. Tat (24 h) increased the number of GFP-gephyrin puncta and decreased the number of PSD95-GFP puncta. The effects of Tat on inhibitory and excitatory synapse number were mediated via the low-density lipoprotein receptor-related protein and subsequent Ca(2+) influx through GluN2A-containing NMDA receptors (NMDARs). The effects of Tat on synapse number required cell-autonomous activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Ca(2+) buffering experiments suggested that loss of excitatory synapses required activation of CaMKII in close apposition to the NMDAR, whereas the increase in inhibitory synapses required Ca(2+) diffusion to a more distal site. The increase in inhibitory synapses was prevented by inhibiting the insertion of GABAA receptors into the membrane. Synaptic changes induced by Tat (16 h) were reversed by blocking either GluN2B-containing NMDARs or neuronal nitric oxide synthase, indicating changing roles for pathways activated by NMDAR subtypes during the neurotoxic process. Compensatory changes in the number of inhibitory and excitatory synapses may serve as a novel mechanism to reduce network excitability in the presence of HIV-1 neurotoxins; these changes may inform the development of treatments for HAND.


Asunto(s)
Hipocampo/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/administración & dosificación , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Inhibición Neural/fisiología , Neuronas/citología , Neuronas/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
5.
J Neurophysiol ; 110(5): 1144-57, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23741036

RESUMEN

During epileptogenesis a series of molecular and cellular events occur, culminating in an increase in neuronal excitability, leading to seizure initiation. The entorhinal cortex has been implicated in the generation of epileptic seizures in both humans and animal models of temporal lobe epilepsy. This hyperexcitability is due, in part, to proexcitatory changes in ion channel activity. Sodium channels play an important role in controlling neuronal excitability, and alterations in their activity could facilitate seizure initiation. We sought to investigate whether medial entorhinal cortex (mEC) layer II neurons become hyperexcitable and display proexcitatory behavior of Na channels during epileptogenesis. Experiments were conducted 7 days after electrical induction of status epilepticus (SE), a time point during the latent period of epileptogenesis and before the onset of seizures. mEC layer II stellate neurons from post-SE animals were hyperexcitable, eliciting action potentials at higher frequencies compared with control neurons. Na channel currents recorded from post-SE neurons revealed increases in Na current amplitudes, particularly persistent and resurgent currents, as well as depolarized shifts in inactivation parameters. Immunocytochemical studies revealed increases in voltage-gated Na (Nav) 1.6 isoform levels. The toxin 4,9-anhydro-tetrodotoxin, which has greater selectivity for Nav1.6 over other Na channel isoforms, suppressed neuronal hyperexcitability, reduced macroscopic Na currents, persistent and resurgent Na current densities, and abolished depolarized shifts in inactivation parameters in post-SE neurons. These studies support a potential role for Nav1.6 in facilitating the hyperexcitability of mEC layer II neurons during epileptogenesis.


Asunto(s)
Corteza Entorrinal/fisiopatología , Epilepsia/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.6/fisiología , Neuronas/fisiología , Animales , Técnicas In Vitro , Masculino , Canal de Sodio Activado por Voltaje NAV1.6/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Ratas , Ratas Sprague-Dawley , Sodio/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/análogos & derivados , Tetrodotoxina/farmacología , Factores de Tiempo
6.
Epilepsia ; 53(1): 168-76, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22126400

RESUMEN

PURPOSE: The adenosinergic system is known to exert an inhibitory affect in the brain, and as such adenosine has been considered an endogenous anticonvulsant. Entorhinal cortex (EC) layer II neurons, which serve as the primary input to the hippocampus, are spared in temporal lobe epilepsy (TLE) and become hyperexcitable. Because these neurons also express adenosine receptors, the activity of these neurons may be controlled by adenosine, specifically during seizure activity when adenosine levels are thought to rise. In light of this, we determined if the actions of adenosine on medial EC (mEC) layer II stellate neurons are augmented in TLE and by which receptor subtype. METHODS: Horizontal brain slices were prepared from rats exhibiting spontaneous seizures (TLE) induced by electrical stimulation and compared with age-matched control rats. mEC layer II stellate neurons were visually identified, and action potentials (APs) were evoked either by a series of depolarizing current injection steps or via presynaptic stimulation of mEC deep layers. The effects of adenosine were compared with actions of adenosine A(1) and A(2A) receptor-specific agonists (CPA and CGS-21680) and antagonists (DPCPX and ZM-241385), respectively. Immunohistochemical and qPCR techniques were also employed to assess relative adenosine A(1)-receptor message and expression. KEY FINDINGS: mEC layer II stellate neurons were hyperexcitable in TLE, evoking a higher frequency of APs when depolarized and generating bursts of APs when synaptically stimulated. Adenosine reduced AP frequency and synaptically evoked APs in a dose-dependent manner (500 nM-100 µM); however, in TLE, the inhibitory actions of adenosine occurred at concentrations that were without affect in control neurons. In both cases, the inhibitory actions of adenosine were mediated via activation of the A(1)- and not the A(2A)-receptor subtype. Quantitative polymerase chain reaction (qPCR) and immunohistochemical experiments revealed an upregulation of the adenosine A(1) mRNA and an increase in A(1)-receptor staining in TLE neurons compared to control. SIGNIFICANCE: Our data indicate that the actions of adenosine on mEC layer II stellate neurons is accentuated in TLE due to an upregulation of adenosine A(1)-receptors. Because adenosine levels are thought to rise during seizure activity, activation of adenosine A(1)-receptors could provide a possible endogenous mechanism to suppress seizure activity and spread within the temporal lobe.


Asunto(s)
Adenosina/metabolismo , Corteza Entorrinal/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/fisiopatología , Neuronas/metabolismo , Receptor de Adenosina A1/metabolismo , Potenciales de Acción/efectos de los fármacos , Agonistas del Receptor de Adenosina A1/farmacología , Antagonistas del Receptor de Adenosina A1/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Corteza Entorrinal/citología , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/fisiopatología , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Adenosina A2/metabolismo
7.
Neurobiol Dis ; 41(2): 361-76, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20946956

RESUMEN

Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy involving the limbic structures of the temporal lobe. Layer II neurons of the entorhinal cortex (EC) form the major excitatory input into the hippocampus via the perforant path and consist of non-stellate and stellate neurons. These neurons are spared and hyper-excitable in TLE. The basis for the hyper-excitability is likely multifactorial and may include alterations in intrinsic properties. In a rat model of TLE, medial EC (mEC) non-stellate and stellate neurons had significantly higher action potential (AP) firing frequencies than in control. The increase remained in the presence of synaptic blockers, suggesting intrinsic mechanisms. Since sodium (Na) channels play a critical role in AP generation and conduction we sought to determine if Na channel gating parameters and expression levels were altered in TLE. Na channel currents recorded from isolated mEC TLE neurons revealed increased Na channel conductances, depolarizing shifts in inactivation parameters and larger persistent (I(NaP)) and resurgent (I(NaR)) Na currents. Immunofluorescence experiments revealed increased staining of Na(v)1.6 within the axon initial segment and Na(v)1.2 within the cell bodies of mEC TLE neurons. These studies provide support for additional intrinsic alterations within mEC layer II neurons in TLE and implicate alterations in Na channel activity and expression, in part, for establishing the profound increase in intrinsic membrane excitability of mEC layer II neurons in TLE. These intrinsic changes, together with changes in the synaptic network, could support seizure activity in TLE.


Asunto(s)
Corteza Entorrinal/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Activación del Canal Iónico/fisiología , Neuronas/metabolismo , Canales de Sodio/fisiología , Animales , Modelos Animales de Enfermedad , Corteza Entorrinal/patología , Epilepsia del Lóbulo Temporal/patología , Activación del Canal Iónico/efectos de los fármacos , Masculino , Inhibición Neural/genética , Neuronas/efectos de los fármacos , Neuronas/patología , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Sinapsis/genética
8.
Brain Res ; 1280: 60-8, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19450566

RESUMEN

Adenosine is an endogenous neuromodulator previously shown to suppress synaptic transmission and membrane excitability in the CNS. In this study we have determined the actions of adenosine on excitatory synaptic transmission in the subiculum, the main output area for the hippocampus. Adenosine (10 microM) reversibly inhibited excitatory post synaptic currents (EPSCs) recorded from subiculum neurons. These actions were mimicked by the A(1) receptor-specific agonist, N(6)-cyclopentyl-adenosine (CPA, 10 nM) and blocked by the A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 500 nM), but were unaffected by the A(2A) antagonist ZM 241385 (50 nM). In membrane excitability experiments, bath application of adenosine and CPA reversibly inhibited action potentials (AP) in subiculum neurons that were evoked by stimulation of the pyramidal cell layer of the CA1, but not by depolarizing current injection steps in subiculum neurons, suggesting a presynaptic mechanism of action. In support, adenosine and CPA application reduced mEPSC frequency without modulating mEPSC amplitude. These studies suggest that modulation of subiculum neuron excitability by adenosine is mediated via presynaptic A(1) receptors.


Asunto(s)
Hipocampo/fisiología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Receptor de Adenosina A1/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Adenosina/análogos & derivados , Adenosina/farmacología , Agonistas del Receptor de Adenosina A1 , Antagonistas del Receptor de Adenosina A1 , Agonistas del Receptor de Adenosina A2 , Antagonistas del Receptor de Adenosina A2 , Animales , Fármacos del Sistema Nervioso Central/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de Adenosina A2/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Triazinas/farmacología , Triazoles/farmacología , Xantinas/farmacología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
9.
J Pharmacol Exp Ther ; 328(1): 201-12, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18952887

RESUMEN

Epilepsy remains a devastating neurological disorder associated with recurrent, unprovoked, spontaneous epileptic seizures. Current treatments involve seizure suppression using antiepileptic drugs (AEDs); however, many patients remain refractory to current treatments or suffer serious side effects. In view of this continued need for more effective and safer AEDs, we have designed a novel compound, 3-hydroxy-3-(4-methoxyphenyl)-1-methyl-1,3-dihydro-indol-2-one (YWI92), based on a lactam structural class, and evaluated its modulation of human neuronal sodium channel isoform (hNa(v))1.2 currents and hippocampal neuron action potential firing. Furthermore, we have tested its AED activity using a chronic and acute rat seizure model. In a similar manner to lamotrigine, a clinically used AED, YWI92 exhibited tonic block of hNa(v)1.2 channels and caused a hyperpolarizing shift in the steady-state inactivation curve when using a 30-s inactivating prepulse. YWI92 also delayed the time constants of channel repriming after a 30-s inactivating prepulse and exhibited use-dependent block at 20-Hz stimulation frequency. In membrane excitability experiments, YWI92 inhibited burst firing in CA1 neurons of animals with temporal lobe epilepsy at concentrations that had little effect on CA1 neurons from control animals. These actions on neuronal activity translated into AED activity in the maximal electroshock acute seizure model (ED(50) = 22.96 mg/kg), and importantly, in a chronic temporal lobe epilepsy model, in which the mean number of seizures was reduced. Notably, YWI92 exhibited no sedative/ataxic side effects at concentrations up to 500 mg/kg. In summary, greater affinity for inactivated sodium channels, particularly after long depolarizing prepulses, may be important for both anticonvulsant activity and drug tolerability.


Asunto(s)
Anticonvulsivantes/farmacología , Epilepsia/tratamiento farmacológico , Indoles/farmacología , Lactamas/farmacología , Sistema Límbico/fisiopatología , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Canales de Sodio/fisiología , Animales , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Electrofisiología , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Humanos , Riñón/efectos de los fármacos , Riñón/embriología , Riñón/fisiología , Lactamas/uso terapéutico , Sistema Límbico/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Canales de Sodio/efectos de los fármacos
10.
J Pharmacol Exp Ther ; 320(2): 828-36, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17090703

RESUMEN

Although propofol is most commonly known for its general anesthetic properties, at subanesthetic doses, propofol has been effectively used to suppress seizures during refractory status epilepticus, a mechanism, in part, attributed to the inhibition of neuronal sodium channels. In this study, we have designed and synthesized two novel analogs of propofol, HS245 [2-(3-ethyl-4-hydroxy-5-isopropyl-phenyl)-3,3,3-trifluoro-2-hydroxy-propionamide] and HS357 [2-hydroxy-8-(4-hydroxy-3,5-diisopropyl-phenyl)-2-trifluoromethyl-octanoic acid amide], and determined their effects on sodium currents recorded from cultured hippocampal neurons. HS357 had greater affinity for the inactivated state of the sodium channel than propofol and HS245 (0.22 versus 0.74 and 1.2 microM, respectively) and exhibited the greatest ratio of affinity for the resting over the inactivated state. HS357 also demonstrated greater use-dependent block and delayed recovery from inactivation in comparison with propofol and HS245. Under current-clamp conditions, action potentials from hippocampal CA1 neurons in slices were evoked by current injection, or following perfusion with a zero Mg(2+)/7 mM K(+) artificial cerebrospinal fluid solution. Propofol and HS357 reduced the number of current-induced action potentials; however, HS357 caused a greater reduction in the number of spontaneous action potentials. Consistent with these electrophysiology studies, propofol and HS357 protected mice against acute seizures in the 6-Hz (22-mA) partial psychomotor model. Efficacious doses of propofol were associated with an impairment of motor coordination as assessed in the rotorod toxicity assay. In contrast, HS357 demonstrated a 2-fold greater protective index than propofol. Thus, propofol analogs represent an important structural class from which not only effective, but also safer, anti-convulsants may be developed.


Asunto(s)
Amidas/farmacología , Anticonvulsivantes/farmacología , Hipocampo/efectos de los fármacos , Propofol/análogos & derivados , Bloqueadores de los Canales de Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Hipocampo/fisiología , Propofol/farmacología , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...