Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cells ; 9(12)2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255741

RESUMEN

Following a prolonged exposure to hypoxia-reoxygenation, a partial disruption of the ER-mitochondria tethering by mitofusin 2 (MFN2) knock-down decreases the Ca2+ transfer between the two organelles limits mitochondrial Ca2+ overload and prevents the Ca2+-dependent opening of the mitochondrial permeability transition pore, i.e., limits cardiomyocyte cell death. The impact of the metabolic changes resulting from the alteration of this Ca2+crosstalk on the tolerance to hypoxia-reoxygenation injury remains partial and fragmented between different field of expertise. >In this study, we report that MFN2 loss of function results in a metabolic switch driven by major modifications in energy production by mitochondria. During hypoxia, mitochondria maintain their ATP concentration and, concomitantly, the inner membrane potential by importing cytosolic ATP into mitochondria through an overexpressed ANT2 protein and by decreasing the expression and activity of the ATP hydrolase via IF1. This adaptation further blunts the detrimental hyperpolarisation of the inner mitochondrial membrane (IMM) upon re-oxygenation. These metabolic changes play an important role to attenuate cell death during a prolonged hypoxia-reoxygenation challenge.


Asunto(s)
Translocador 2 del Nucleótido Adenina/metabolismo , Adenosina Trifosfato/metabolismo , Hipoxia/metabolismo , Mitocondrias/metabolismo , Animales , Calcio/metabolismo , Muerte Celular/fisiología , Línea Celular , Potencial de la Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Ratas
2.
J Biol Chem ; 294(42): 15282-15292, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31434742

RESUMEN

Calcium homeostasis is essential for cell survival and is precisely controlled by several cellular actors such as the sarco/endoplasmic reticulum and mitochondria. Upon stress induction, Ca2+ released from sarco/endoplasmic reticulum stores and from extracellular Ca2+ pools accumulates in the cytosol and in the mitochondria. This induces Ca2+ overload and ultimately the opening of the mitochondrial permeability transition pore (mPTP), promoting cell death. Currently, it is unclear whether intracellular Ca2+ stores are sufficient to promote the mPTP opening. Ca2+ retention capacity (CRC) corresponds to the maximal Ca2+ uptake by the mitochondria before mPTP opening. In this study, using permeabilized cardiomyocytes isolated from adult mice, we modified the standard CRC assay by specifically inducing reticular Ca2+ release to investigate the respective contributions of reticular Ca2+ and extracellular Ca2+ to mPTP opening in normoxic conditions or after anoxia-reoxygenation. Our experiments revealed that Ca2+ released from the sarco/endoplasmic reticulum is not sufficient to trigger mPTP opening and corresponds to ∼50% of the total Ca2+ levels required to open the mPTP. We also studied mPTP opening after anoxia-reoxygenation in the presence or absence of extracellular Ca2+ In both conditions, Ca2+ leakage from internal stores could not trigger mPTP opening by itself but significantly decreased the CRC. Our findings highlight how a modified CRC assay enables the investigation of the role of reticular and extracellular Ca2+ pools in the regulation of the mPTP. We propose that this method may be useful for screening molecules of interest implicated in mPTP regulation.


Asunto(s)
Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Muerte Celular , Células Cultivadas , Retículo Endoplásmico/metabolismo , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/citología
3.
Sci Rep ; 7(1): 5040, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698627

RESUMEN

Mitochondrial integrity is critical for the regulation of cellular energy and apoptosis. Metformin is an energy disruptor targeting complex I of the respiratory chain. We demonstrate that metformin induces endoplasmic reticulum (ER) stress, calcium release from the ER and subsequent uptake of calcium into the mitochondria, thus leading to mitochondrial swelling. Metformin triggers the disorganization of the cristae and inner mitochondrial membrane in several cancer cells and tumors. Mechanistically, these alterations were found to be due to calcium entry into the mitochondria, because the swelling induced by metformin was reversed by the inhibition of mitochondrial calcium uniporter (MCU). We also demonstrated that metformin inhibits the opening of mPTP and induces mitochondrial biogenesis. Altogether, the inhibition of mPTP and the increase in mitochondrial biogenesis may account for the poor pro-apoptotic effect of metformin in cancer cells.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético/efectos de los fármacos , Metformina/farmacología , Mitocondrias/metabolismo , Animales , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Dilatación Mitocondrial/efectos de los fármacos , Modelos Biológicos , Biogénesis de Organelos
4.
J Cardiovasc Pharmacol ; 69(5): 326-334, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28328748

RESUMEN

BACKGROUND: Volatile anesthetics are known to limit myocardial ischemia-reperfusion injuries. Mitochondria were shown to be major contributors to cardioprotection. Cyclophilin D (CypD) is one of the main regulators of mitochondria-induced cell death. We compared the effect of isoflurane, sevoflurane, and desflurane in the presence or absence of CypD, to clarify its role in the mechanism of cardioprotection induced by these anesthetics. METHODS: Oxidative phosphorylation, mitochondrial membrane potential, and H2O2 production were measured in isolated mitochondria from wild-type (WT) or CypD knockout mice in basal conditions and after hypoxia-reoxygenation in the presence or absence of volatile anesthetics. RESULTS: All volatile anesthetics inhibited mitochondrial state 3 of complex I, decreased membrane potential, and increased adenosine diphosphate consumption duration in both WT and CypD knockout mice. However, they differently modified H2O2 production after stimulation by succinate: CypD ablation reduced H2O2 production, isoflurane decreased H2O2 level in WT but not in CypD knockout mice, sevoflurane affected both lines whereas desflurane increased H2O2 production in CypD knockout and had no effect on WT mice. CONCLUSIONS: This study showed different effects of isoflurane, sevoflurane, and desflurane on mitochondrial functions and highlighted the implication of CypD in the regulation of adenosine diphosphate consumption and complex I-induced radical oxygen species production.


Asunto(s)
Anestésicos por Inhalación/farmacología , Ciclofilinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Isoflurano/análogos & derivados , Éteres Metílicos/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Sustancias Protectoras/farmacología , Adenosina Trifosfato/metabolismo , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/deficiencia , Ciclofilinas/genética , Citoprotección , Desflurano , Genotipo , Peróxido de Hidrógeno/metabolismo , Isoflurano/farmacología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fosforilación Oxidativa/efectos de los fármacos , Fenotipo , Sevoflurano , Factores de Tiempo
5.
Basic Res Cardiol ; 112(1): 4, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27995363

RESUMEN

Reperfusion injury is responsible for an important part of myocardial infarct establishment due notably to triggering cardiomyocytes death at the first minutes of reperfusion. AZP-531 is an optimized analog of unacylated ghrelin currently in clinical development in several metabolic diseases. We investigated a potential cardioprotective effect of AZP-531 in ischemia/reperfusion (IR) and the molecular underlying mechanism(s) involved in this protection. In vivo postconditioning with AZP-531 in C57BL6 mouse IR model decreased infarct size. Western blot analysis on areas at risk from the different mouse groups showed that AZP-531 activates Akt, ERK1-2 as well as S6 and 4EBP1, mTORC1 effectors. We also showed an inhibition of caspase 3 cleavage and Bax translocation to the mitochondria. AZP-531 also stimulated the expression of antioxidants and was capable of decreasing mitochondrial H2O2 production, contributing to the reduction of ROS accumulation. AZP-531 exhibits cardioprotective effect when administrated for postconditioning in C57BL6 mouse IR model. Treatment with AZP-531 rescued the myocardium from cell death at early reperfusion by stimulating protein synthesis, inhibiting Bax/caspase 3-induced apoptosis as well as ROS accumulation and oxidative stress-induced necrosis. AZP-531 may prove useful in the treatment of IR injury.


Asunto(s)
Ghrelina/farmacología , Poscondicionamiento Isquémico/métodos , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Péptidos Cíclicos/farmacología , Animales , Western Blotting , Modelos Animales de Enfermedad , Ghrelina/análogos & derivados , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial
6.
Anesthesiology ; 123(6): 1374-84, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26460965

RESUMEN

BACKGROUND: The mitochondrial permeability transition pore (PTP) has been established as an important mediator of ischemia-reperfusion-induced cell death. The matrix protein cyclophilin D (CypD) is the best known regulator of PTP opening. Therefore, the authors hypothesized that isoflurane, by inhibiting the respiratory chain complex I, another regulator of PTP, might reinforce the myocardial protection afforded by CypD inhibition. METHODS: Adult mouse or isolated cardiomyocytes from wild-type or CypD knockout (CypD-KO) mice were subjected to ischemia or hypoxia followed by reperfusion or reoxygenation. Infarct size was assessed in vivo. Mitochondrial membrane potential and PTP opening were assessed using tetramethylrhodamine methyl ester perchlorate and calcein-cobalt fluorescence, respectively. Fluo-4 AM and rhod-2 AM staining allowed the measurement, by confocal microscopy, of Ca transient and Ca transfer from sarcoplasmic reticulum (SR) to mitochondria after caffeine stimulation. RESULTS: Both inhibition of CypD and isoflurane significantly reduced infarct size (-50 and -37%, respectively) and delayed PTP opening (+63% each). Their combination had no additive effect (n = 6/group). CypD-KO mice displayed endogenous protection against ischemia-reperfusion. Isoflurane depolarized the mitochondrial membrane (-28%, n = 5), decreased oxidative phosphorylation (-59%, n = 5), and blunted the caffeine-induced Ca transfer from SR to mitochondria (-22%, n = 7) in the cardiomyocytes of wild-type mice. Importantly, this transfer was spontaneously decreased in the cardiomyocytes of CypD-KO mice (-25%, n = 4 to 5). CONCLUSIONS: The results suggest that the partial inhibitory effect of isoflurane on respiratory complex I is insufficient to afford a synergy to CypD-induced protection. Isoflurane attenuates the Ca transfer from SR to mitochondria, which is also the prominent role of CypD, and finally prevents PTP opening.


Asunto(s)
Calcio/metabolismo , Ciclofilinas/metabolismo , Precondicionamiento Isquémico Miocárdico , Isoflurano/administración & dosificación , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Anestésicos por Inhalación/administración & dosificación , Animales , Peptidil-Prolil Isomerasa F , Complejo I de Transporte de Electrón/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo
7.
Am J Physiol Cell Physiol ; 304(9): C881-94, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23426965

RESUMEN

Calcium homeostasis is critical for several vital functions in excitable and nonexcitable cells and has been shown to be impaired in many pathologies including Duchenne muscular dystrophy (DMD). Various studies using murine models showed the implication of calcium entry in the dystrophic phenotype. However, alteration of store-operated calcium entry (SOCE) and transient receptor potential vanilloid 2 (TRPV2)-dependant cation entry has not been investigated yet in human skeletal muscle cells. We pharmacologically characterized basal and store-operated cation entries in primary cultures of myotubes prepared from muscle of normal and DMD patients and found, for the first time, an increased SOCE in DMD myotubes. Moreover, this increase cannot be explained by an over expression of the well-known SOCE actors: TRPC1/4, Orai1, and stromal interaction molecule 1 (STIM1) mRNA and proteins. Thus we investigated the modes of regulation of this cation entry. We firstly demonstrated the important role of the scaffolding protein α1-syntrophin, which regulates SOCE in primary human myotubes through its PDZ domain. We also studied the implication of phospholipase C (PLC) and protein kinase C (PKC) in SOCE and showed that their inhibition restores normal levels of SOCE in DMD human myotubes. In addition, the involvement of TRPV2 in calcium deregulation in DMD human myotubes was explored. We showed an abnormal elevation of TRPV2-dependant cation entry in dystrophic primary human myotubes compared with normal ones. These findings show that calcium homeostasis mishandling in DMD myotubes depends on SOCE under the influence of Ca(2+)/PLC/PKC pathway and α1-syntrophin regulation as well as on TRPV2-dependant cation influx.


Asunto(s)
Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Canales Catiónicos TRPV/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/genética , Canales de Calcio/metabolismo , Células Cultivadas , Estrenos/farmacología , Gadolinio/farmacología , Expresión Génica , Humanos , Imidazoles/farmacología , Indoles/farmacología , Maleimidas/farmacología , Proteínas de la Membrana/genética , Distrofia Muscular de Duchenne/patología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Nifedipino/farmacología , Proteína ORAI1 , Técnicas de Placa-Clamp , Cultivo Primario de Células , Proteína Quinasa C/metabolismo , Pirrolidinonas/farmacología , Retículo Sarcoplasmático/metabolismo , Molécula de Interacción Estromal 1 , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Fosfolipasas de Tipo C/metabolismo
8.
Cell Calcium ; 52(6): 445-56, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22938798

RESUMEN

In skeletal muscles from patient suffering of Duchenne Muscular Dystrophy and from mdx mice, the absence of the cytoskeleton protein dystrophin has been shown to be essential for maintaining a normal calcium influx. We showed that a TRPC store-dependent cation influx is increased by loss of dystrophin or a scaffolding protein α1-syntrophin, however the mechanisms of this calcium mishandling are incompletely understood. First of all, we confirmed that TRPC1 but also STIM1 and Orai1 are supporting the store-operated cation entry which is enhanced in dystrophin-deficient myotubes. Next, we demonstrated that inhibition of PLC or PKC in dystrophin-deficient myotubes restores elevated cation entry to normal levels similarly to enforced minidystrophin expression. In addition, silencing α1-syntrophin also increased cation influx in a PLC/PKC dependent pathway. We also showed that α1-syntrophin and PLCß are part of a same protein complex reinforcing the idea of their inter-relation in calcium influx regulation. This elevated cation entry was decreased to normal levels by chelating intracellular free calcium with BAPTA-AM. Double treatments with BAPTA-AM and PLC or PKC inhibitors suggested that the elevation of cation influx by PLC/PKC pathway is dependent on cytosolic calcium. All these results demonstrate an involvement in dystrophin-deficient myotubes of a specific calcium/PKC/PLC pathway in elevation of store-operated cation influx supported by the STIM1/Orai1/TRPC1 proteins, which is normally regulated by the α1-syntrophin/dystrophin scaffold.


Asunto(s)
Calcio/metabolismo , Distrofina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfolipasa C beta/metabolismo , Proteína Quinasa C/metabolismo , Animales , Canales de Calcio/química , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Quelantes/farmacología , Distrofina/genética , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína ORAI1 , Fosfolipasa C beta/antagonistas & inhibidores , Proteína Quinasa C/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Molécula de Interacción Estromal 1 , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...